
CS266 Software Reverse Engineering (SRE)

Applying Anti-Reversing Techniques to Java Bytecode

Teodoro (Ted) Cipresso

Senior Software Engineer, IBM

SRE Guest Lecture

The information in this presentation is taken from the thesis “Software reverse engineering education”
available at http://scholarworks.sjsu.edu/etd_theses/3734/ where all citations can be found.

http://scholarworks.sjsu.edu/etd_theses/3734/

Applying Anti-Reversing Techniques to Java Bytecode

 Introduction and Motivation for Anti-Reversing

 If Java bytecode is not protected through obfuscation it’s straightforward for a
reverser to decompile the bytecode, make changes, and recompile.

 If our software sells for money, then it’s natural to offer a trial version.

 Trial versions employ guards to ultimately earn your business:

⚫ Time-bomb: stops working after n days.

⚫ Usage limit: stops working after n minutes or n operations.

⚫ Crippleware: Critical functionality is disabled (e.g, can’t save you work).

 This is hard to get right without annoying a potential customer.

2

Applying Anti-Reversing Techniques to Java Bytecode

 Introduction and Motivation for Anti-Reversing

 Applying anti-reversing techniques to Java bytecode (or binaries in general)
can prevent a reverser from:

⚫ Removing trialware guards in software (types on previous slide).

⚫ Recovering algorithms that make the software valuable.

 While anti-reversing techniques cannot completely prevent software from being
reversed, they act as a deterrent by increasing the challenge for the reverser.

 [5] states “It is never possible to entirely prevent reversing” and “What is
possible is to hinder and obstruct reversers by wearing them out and making
the process so slow and painful that they give up.”

3

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764574817.html

Applying Anti-Reversing Techniques to Java Bytecode

 Introduction and Motivation for Anti-Reversing

 Apply anti-reversing techniques to source code, machine code, or bytecode can
have adverse effects on a program's size, efficiency, and maintainability.

⚫ Therefore, it’s important to evaluate whether a particular program warrants
the cost of protecting it.

 Anti-reversing techniques are meant to be applied post-production, after the
coding for an application is complete and tested.

⚫ These techniques obscure data and logic and therefore are difficult to
implement while also working on the functionality of the application.

 Even worse than the general confusion of interleaving anti-reversing techniques
with regular coding is the possibility of creating a dependency between the
actual application logic and the anti-reversing techniques used.

4

Applying Anti-Reversing Techniques to Java Bytecode

 Basic Anti-Reversing Techniques

 Eliminating Symbolic Information: Render unrecognizable, all symbolic
information in machine code or bytecode because such information can be
quite useful to a reverse engineer.

 Obfuscating the Program: Includes removing symbolic information but goes
much further. Care must be taken with the following techniques to ensure that
the original program functionality remains intact.

⚫ Modify the layout of a program (move things around).

⚫ Introducing confusing non-essential logic or control flow.

⚫ Storing data in difficult to interpret organizations or formats.

 Obfuscate data structures, encrypt strings etc..

5

Applying Anti-Reversing Techniques to Java Bytecode

 Basic Anti-Reversing Techniques

 Embedding Antidebugger Code: Live analysis is how most reversers accomplish
their objective. Therefore it is common for developers to implement guards
against binary debuggers.

⚫ Live analysis of machine code is accomplished using an interactive
debugger-disassembler where you attach to a running programming and
step instructions to observe the program at points of interest.

⚫ Static analysis of machine code is usually carried out using a disassembler
and heuristic algorithms that attempt to understand the structure of the
program.

⚫ Interactive debugging of Java bytecode can be accomplished using
debugger interfaces implemented by the JVM per the Java Platform
Debugger Architecture (JPDA).

6

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/architecture.html#interfaces
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html

Applying Anti-Reversing Techniques to Java Bytecode

 Java Bytecode Anti-Reversing Considerations

 While it is most often the case that we cannot recover the original Java source
code from the bytecode, the results will be functionally equivalent.

 When new features are added to the Java language, new bytecode instructions
are not always added or needed. For example:

⚫ Support for generics in collections is implemented by carrying additional
information (in the constants pool of the class) that describes the type of
object a collection should contain.

 This information can then be used at execution time by the JVM to
validate the type of each object in the collection.

7

Applying Anti-Reversing Techniques to Java Bytecode

 Java Bytecode Anti-Reversing Considerations

 The strategy of having newer Java language constructs result in compatible
bytecode with optionally-utilized metadata provides the benefit of allowing
legacy Java bytecode to run on newer JVMs.

⚫ If a decompiler doesn't know to look for the metadata, some information is
lost. For example:

 The fact that a program used generics would not be recovered and all
collections would be of type Object (with cast statements of course).

8

Applying Anti-Reversing Techniques to Java Bytecode

 Java Bytecode Anti-Reversing Tools

 Since Java bytecode is standardized there are many obfuscation tools available
on the Internet which perform transformations directly on the Java bytecode
instead of on the Java source code itself.

⚫ SandMark: A Tool for the Study of Software Protection Algorithms [27]

⚫ RetroGuard for Java Obfuscation [28] (defunct, CLI only)

⚫ ProGuard [29]

⚫ Zelix Klassmaster [26] (not free)

⚫ Extensive list of related or alternative tools

9

http://sandmark.cs.arizona.edu/index.html
http://proguard.sourceforge.net/
http://www.zelix.com/klassmaster/
http://proguard.sourceforge.net/alternatives.html
https://reverseit.xyz/wp-content/uploads/2025/01/SandMark340.zip
https://reverseit.xyz/wp-content/uploads/2025/01/retroguard-v2.3.1.zip
https://reverseit.xyz/wp-content/uploads/2025/01/proguard5.2.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

 Variable, class, and method names, are all left intact when compiling Java
source code to Java bytecode.

 Oracle’s Java compiler javac provides an option to leave out debugging
information in Java bytecode: specifying javac -g:none will exclude information
on line numbers, the source file name, and local variables.

⚫ This option offers little to no help in fending off a reverser as none of the
remaining variable names, methods names, and constants are obfuscated.

 [26] states that a high-level of protection can be achieved for Java bytecode by
applying three transformations: Name Obfuscation, String Encryption, and Flow
Obfuscation.

⚫ There does not appear to be a free anti-reversing tool that can perform all
three of these transformations to Java bytecode.

10

http://www.zelix.com/klassmaster/

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

11

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

12

https://reverseit.xyz/wp-content/uploads/2025/01/jclasslib_win64_4_3_1.zip
https://reverseit.xyz/wp-content/uploads/2025/01/CheckLimitation.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

13

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

14

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

15

https://reverseit.xyz/wp-content/uploads/2025/01/proguard5.2.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

16

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

17

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

18

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

19

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

20

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

21

https://reverseit.xyz/wp-content/uploads/2025/01/fernflower.zip
https://reverseit.xyz/wp-content/uploads/2025/01/CheckLimitationObfuscated1.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

22

https://reverseit.xyz/wp-content/uploads/2025/01/SandMark340.zip
https://reverseit.xyz/wp-content/uploads/2025/01/CheckLimitationObfuscated1.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

23

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

24

Applying Anti-Reversing Techniques to Java Bytecode

 Eliminating Symbolic Information

25

https://reverseit.xyz/wp-content/uploads/2025/01/CheckLimitationObfuscated2.zip
https://reverseit.xyz/wp-content/uploads/2025/01/jad.zip

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program

 One of the most popular, and fragile, techniques for preventing decompilation
involves the use of opaque predicates:

⚫ By introducing false ambiguities into the control flow of a program we may
trick a decompiler into traversing garbage bytes that are masquerading as
logic contained in an else clause.

⚫ if (1 == 1) and if (1 == 2) are opaque predicates because the first
always evaluates to true, and the second always to false.

 “Branches that appear to be conditional but are really not.” [5]

⚫ The key to preventing decompilation with opaque predicates is to insert
invalid instructions in the else branch of an always-true predicate or the
if-body of an always false predicate.

26

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764574817.html

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program - Opaque Predicates

⚫ Since the invalid instructions will never be reached during normal operation
of the program there is no impact on the program's operation.

⚫ A naïve decompiler will evaluate both possibilities of an opaque predicate
and fail on attempting to decompile the invalid, unreachable “instructions”.

27

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program – Java Bytecode Verifier

 Unfortunately, opaque predicates, often used in protecting machine code from
disassembly, cannot be used with Java bytecode because of the presence of the
Java Bytecode Verifier in the JVM.

⚫ The JVM verifies bytecode before execution via single-pass static analysis.

⚫ Therefore invalid instructions/garbage bytes are likely to be caught.

 [31] documents the following checks made by the Java Bytecode Verifier:

⚫ Type correctness: arguments of an instruction, whether on the stack or in
registers, should always be of the type expected by the instruction.

⚫ No stack overflow or underflow: instructions which remove items from the
stack should not do so when the stack is empty. Also, instructions should
not attempt to push items on the stack when the stack is full.

28

http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=18300&local_base=GEN01-MCG02

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program – Java Bytecode Verifier

⚫ Register initialization: Within a single method any use of a register must
come after the initialization of that register. That is, there should be at least
one store operation to that register before a load operation on that register.

⚫ Object initialization: Creation of object instances must always be followed
by a call to one of the possible initialization (constructor) methods for that
object before it can be used.

⚫ Access control: Method calls, field accesses, and class references must
always adhere to the Java visibility policies for that method, field, or
reference (e.g., private, protected, public).

 Recall that bytecode targeted to run on a JVM may have been generated by
something other than the accompanying Java compiler (even dynamically).

⚫ This actuality highlights the need for bytecode verification.

29

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program - Opaque Predicates

 Opaque predicates do remain viable for machine code, though there is some
evidence that good disassemblers, such as IDA Pro, do check for rudimentary
opaque predicates [5].

 SandMark‘s creators claim that the presence of opaque predicates in bytecode,
without garbage bytes of course, makes decompilation more difficult.

 SandMark implements several different algorithms for sprinkling opaque
predicates throughout bytecode.

⚫ For example, the opaque branch insertion obfuscation claims to “insert
jumps into a method via opaque predicates so that the control flow graph is
irreducible. This inhibits decompilation.”

30

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764574817.html
http://sandmark.cs.arizona.edu/index.html

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program - Opaque Predicates

31

Applying Anti-Reversing Techniques to Java Bytecode

 Obfuscating The Program - Opaque Predicates

32

http://www.cipressosjsu.info/CS266/zip/Jad.zip
http://www.cipressosjsu.info/CS266/jar/CheckLimitationObfuscated3.jar

33

End

	Slide 1: CS266 Software Reverse Engineering (SRE) Applying Anti-Reversing Techniques to Java Bytecode
	Slide 2: Applying Anti-Reversing Techniques to Java Bytecode Introduction and Motivation for Anti-Reversing
	Slide 3: Applying Anti-Reversing Techniques to Java Bytecode Introduction and Motivation for Anti-Reversing
	Slide 4: Applying Anti-Reversing Techniques to Java Bytecode Introduction and Motivation for Anti-Reversing
	Slide 5: Applying Anti-Reversing Techniques to Java Bytecode Basic Anti-Reversing Techniques
	Slide 6: Applying Anti-Reversing Techniques to Java Bytecode Basic Anti-Reversing Techniques
	Slide 7: Applying Anti-Reversing Techniques to Java Bytecode Java Bytecode Anti-Reversing Considerations
	Slide 8: Applying Anti-Reversing Techniques to Java Bytecode Java Bytecode Anti-Reversing Considerations
	Slide 9: Applying Anti-Reversing Techniques to Java Bytecode Java Bytecode Anti-Reversing Tools
	Slide 10: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 11: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 12: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 13: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 14: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 15: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 16: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 17: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 18: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 19: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 20: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 21: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 22: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 23: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 24: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 25: Applying Anti-Reversing Techniques to Java Bytecode Eliminating Symbolic Information
	Slide 26: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program
	Slide 27: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program - Opaque Predicates
	Slide 28: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program – Java Bytecode Verifier
	Slide 29: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program – Java Bytecode Verifier
	Slide 30: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program - Opaque Predicates
	Slide 31: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program - Opaque Predicates
	Slide 32: Applying Anti-Reversing Techniques to Java Bytecode Obfuscating The Program - Opaque Predicates
	Slide 33

