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oftware maintenance and harvest- 
ing reusable components from soft- 
ware both require that an analyst 

reconstruct the software’s design. Unfor- 
tunately, source code does not contain 
much of the original design information, 
which must be reconstructed from only the 
barest of clues. Thus, additional informa- 
tion sources, both human and automated, 
are required. Further, because the scale of 
the software is often large (hundreds of 
thousands of lines of code or more), the 
analyst also needs some automated sup- 
port for the understanding process. 

Design recovery recreates design 
abstractions from a combination of code, 
existirig design documentation (if avail- 
able), personal experience, and general 
knowledge about problem and application 
domains. ( I  use the term “abstraction” in 
its general sense and specifically not in the 
abstract-data-type sense. Thus, the 
abstra1:tions I discuss are generalized 
structures that contain fewer details than 
found in the source code. Any reference to 
ADTs will be explicit.) 

The recovered design abstractions must 
include conventional software engineer- 
ing representations such as formal specifi- 
cations, module breakdowns, data 

The Desire system 
helps software 

engineers understand 
programs by analyzing 

code, relying on the 
analyst’s own 
reasoning, and 
drawing on a 

knowledge base of 
design expectations. 

abstractions, dataflows, and program de- 
scription language. In addition, they must 
include informal linguistic knowledge 
about problem domains, application idi- 
oms, and the world in general. In short, 
design recovery must reproduce all of the 
information required for a person to fully 

understand what a program does, how it  
does it, why it  does it, and so forth. Thus, 
design recovery deals with a far wider 
range of information than found in conven- 
tional software engineering representa- 
tions or code. 

Design recovery occurs across a spec- 
trum of activities from software develop- 
ment to maintenance. The developer of 
new software spends a great deal of time 
trying to understand the structure of simi- 
lar systems and systems components. The 
software maintainer spends much of his or 
her time studying a system’s structure to 
understand the nature and effect of a re- 
quested change. In each case, the analyst is 
involved in design recovery. Thus, design 
recovery is a common, sometimes hidden 
part of many activities scattered through- 
out the software life cycle. 

A system expert provides one of the 
most effective ways to recover the design 
of a foreign system by answering ques- 
tions, shifting attention quickly to ger- 
mane areas of the program, interpreting 
code segments in human (informal) terms, 
and so forth. An automated system would 
need access to the same kind of “in-head’’ 
expertise. That is, it would need a knowl- 
edge base - a domain model - that cap- 
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Figure 1. The basic design recovery process. 

tures this expertise. The information must 
be domain oriented, must include more 
information than the analyst might find in 
the code alone, and must guide and assist 
the process of understanding the code. The 
domain model differentiates design recov- 
ery research from such superficially simi- 
lar efforts as reverse engineering, which 
automatically abstracts code to a specifica- 
tion level such that the specifications can 
be modified and revised code can be auto- 
matically regenerated. In fact, the domain 
model is central to the overall success of 
any attempt to automate portions of the 
design recovery process. 

Design recovery in the broad sense is so 
inherently unstructured and unpredictable 
that few tools have been available to help 
the analyst search through code to find 
patterns and structures of interest. Excep- 
tions include simple search tools like grep 
(a pattern searching tool for Unix) and 
some code analysis facilities in tools like 
Cscope (an interactive cross-reference 
tool, also for Unix). Further, there have 
been few tools to help the software engi- 
neer capture, organize, and present the 
design information once recovered, other 
than text editors, outliners, and computer- 
aided software engineering tools. 

To show how we might extend the auto- 
mated assistance available to the software 
engineer, this article introduces the con- 

cept of design recovery, proposes an archi- 
tecture to implement the concept, illus- 
trates how the architecture operates, de- 
scribes the progress toward implementing 
it, and compares this work with othei 
similar work such as reverse engineering 
and program understanding. 

The design recovery 
process 

A key objective of design recovery is to 
develop structures that will help the soft- 
ware engineer understand a pregram or 
system. Understanding is critical to many 
activities - maintenance, enhancement, 
reuse, the design of a similar new system, 
and training, to name a few. This section 
describes the process of design recovery as 
it is applied to maintenance and to the 
population of reuse and recovery libraries. 
I then outline how a recovery knowledge 
base (the domain model) can assist in some 
of the steps of design recovery. 

The design recovery process consists of 
three steps: 

Step one: supporting program under- 
standing for maintenance. Figure 1 illus- 
trates the steps of the design recovery 
process that help a software engineer un- 
derstand a C program. Other classes of 

languages, such as object-oriented lan- 
guages, require amodest variation of these 
ideas. 

The analyst first looks for large-scale 
organizational structures such as the sub- 
system structure, module structure, and 
important data structures. Next, he or she 
recovers various useful design structures 
and expresses them in abstracted forms, 
such as informal diagrams, informal con- 
cepts and relations, design rationale, mod- 
ule structures, flow, and control. In the 
course of this, the software engineer keeps 
track of the relationship (the mapping) 
between the various abstractions and the 
segments of code that implement them. 
Now, let us look at the kinds of questions a 
software engineer asks when trying to 
understand a system. 

What are the modules? Some program- 
ming languages formalize the notion of a 
module and provide constructs todefine it, 
so the module and subsystem structures are 
easy to determine directly from the source 
code. For those languages that do not pro- 
vide constructs, the software engineer 
must use acombination of human intuition 
and experience, clues from the source code 
structures, and some knowledge (expecta- 
tions) of the conventional organization 
patterns for applications of the type under 
consideration. 
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Figure 2. Design recovery extensions supporting reuse library population. 

Expectations derived from organiza- 
tional conventions are powerful and effi- 
cient mechanisms for helping the software 
engineer understand a system. For ex- 
ample:, based on their knowledge of typical 
organizational patterns, experts in the 
domain of Unix-like multitasking code 
would expect to find a module that does 
process management and contains routines 
for the creation, suspension, and deletion 
of processes. Of course, such expectations 
are typically generalizations and, there- 
fore, are only approximations of such 
multii.asking code. Thus, our expectations, 
drawn from various domains, provide 
fuzzy patterns to guide our search and 
analysis of foreign code. But, because of 
their fuzziness, these patterns can do no 
more than serve as guides. 

In addition to identifying large-scale 
structures such asmodules, we also need to 
associate the structures with informal 
semantic concepts. That is, we need to 
provide semantically rich natural-lan- 
guage abstractions,  or conceptual 
abstrmtions, that represent the essential 
concept underlying the module. For ex- 
ample, process management would be a 
good conceptual abstraction to associate 
with the example module discussed above 
because the phrase will help the software 
engineer understand the target system by 
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referencing his or her existing mental 
concept and activating a variety of impor- 
tant and powerful expectations. 

I will formalize these conceptual 
abstractions to the point that some measure 
of intelligent computer processing can be 
implemented on them. I am not suggesting 
fully automating the design recovery proc- 
ess; the degree of automation is unlikely to 
ever go beyond the notion of an assistant 
that can perform wide-ranging searches 
and suggest domain-based recovery strate- 
gies to the software engineer. However, 
even these limited capabilities would be 
quite valuable to an analyst faced with 
hundreds of thousands of lines of foreign 
code. 

What are the key data items? Among the 
other first questions an analyst asks are 

What are the important data items? 
What abstract informal concepts do 
they relate to? 
What are their relations to the modules 
just identified? 

For example, in the multitasking window 
system example, the analyst might find a 
process table containing entries that de- 
scribe the processes currently running 
under the multitasker. The more experi- 

ence the analyst has with multitasking 
systems, the richer the set of expectations 
that he or she will have about such a sys- 
tem. 

What are the software engineering arti- 
facts? As shown in Figure 1, the under- 
standing process recreates the software 
engineering-oriented design artifacts and 
expresses them whereverpossible in terms 
of the module and data abstractions recov- 
ered earlier. The specific artifacts captured 
are determined to some extent by the proc- 
ess model adopted by the programming 
organization. For example, some compa- 
nies will use a program description lan- 
gauge, dataflow, module refinement, and a 
simple datadictionary. Others will depend 
on different design artifact sets. The tech- 
niques under investigation at MCC are 
flexible enough to apply to a broad range of 
such artifacts. 

What are the other informal design 
abstractions? For the set of abstractions to 
be really effective, we need other informa- 
tion structures, many of which are not as 
well defined and formal as the software 
engineering-oriented design artifacts. For 
example, design rationale might be useful, 
perhaps stated in terms of issue-based in- 
formation systems (IBIS) nets.' Further, 
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natural-language prose is unavoidable if 
we want a really effective model of the 
design. Similarly, informal diagrams de- 
scribing abstract views of the target system 
are often quite useful. Thus, we must ex- 
pect to recover a wide variety of design 
artifacts that contain a mixture of formal 
and informal information. 

What is the relation of the design 
abstractions to the code? After recovering 
the artifacts, we must preserve the relation- 
ships among them. That is, once we deter- 
mine that a context switch is being per- 
formed within somedataflow diagram, we 
would like to know exactly which chunk of 
code performs it. Code analysis of a con- 
crete example is often required to answer 
questions that depend on low-level details 
abstracted out of the dataflow diagram. 
Once an engineer establishes this 
abstraction-to-code link, he or she will 
have an organized, “in-head” framework 
(the abstraction) in which to put the code- 
oriented details and, perhaps more impor- 
tantly, a set of organized structures to help 
interpret those details. Thus, the engineer 
can understand the code in terms of the 
abstractions in the framework. 

Step two: supporting population of 
reuse and recovery libraries. How might 
we productively use the recovered design 
components? Populating the component 
library of a reuse system is an obvious and 
valuable use, but that requires further steps 
to generalize the components to enhance 
their reusability. Figure 2 illustrates this 
process. Generalization makes the compo- 
nents applicable to a wider spectrum of 
applications, but it can require that we 
factor them to decouple independent de- 
sign aspects. For example, an independent 
process-management component might 
apply far more widely than one that is 
tightly coupled to window management. 

The final step in this process integrates 
the new abstractions into the reuse library 
and the recovery knowledge base (the 
domain model). Thus, we expect to reuse 
this recovered information to help build 
similar new components and to recover 
similar components from other systems. 

Step three: applying the results of 
design recovery. The final step of the 
process cycle applies the newly populated 
domain model to design recovery (see 
Figure 3). The abstract design components 
stored in the domain model now become 
the starting point for discovering candidate 
concrete realizations of themselves in a 
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Figure 3. Model-aided design recovery process. 

new system’s code. Once the software 
engineer determines that the candidate is 
truly a concrete realization of the abstract 
design component, the design recovery 
system records the finding. For example, 
domain model information about the ex- 
pected kinds of functions in the process 
management example might provide a 
skeleton for that module and even provide 
some semantic clues about the names of 
the various routines in the module. 

Of course, the expectations in the do- 
main model will seldom be an exact match 
of the design structures in the source code, 
and the software engineer will likely have 
to edit the design abstraction to synchro- 
nize it with the code, but even a partial 
match reduces the overall work. Further, 
each significant mismatch provides new 
expectations that help the domain model 
grow and evolve. 

Distinguishing 
properties of design 
recovery 

Two key properties distinguish this de- 
sign recovery model from similar models: 

(1) Use of informal information. The 
model exploits multiple kinds of informa- 
tion. Importantly, it uses informal infor- 
mation, which exists outside of the sphere 
of programming languages and opens a 
new kind of leverage on the recovery prob- 
lem - one that exploits a human-oriented, 
associative style of retrieval and analysis. 

( 2 )  Use of a domain model. This design 
recovery model also exploits multiple 
sources of information. In particular, it 
uses a domain model to help the software 
engineer understand and interpret foreign 
systems. The domain model is a knowl- 
edge base of expectations expressed as 
patterns of program structures, problem 
domain structures, language structures, 
naming conventions, and so forth, which 
provide frameworks for the interpretation 
of the code. These frameworks can be built 
on to recreate the design information that is 
missing from the code as written. Hereto- 
fore, such expertise has existed only in the 
minds of expert software engineers or 
application domain specialists. 

Conceptual abstractions: the use of 
informal information. Among the infor- 
mation developed by the design recovery 
process are instances of conceptual 
abstractions that help the user understand 
the nature of a design in human terms. That 
is, the conceptual abstraction instances 
produced by design recovery must go 
beyond what can be represented in pro- 
gramming languages. They represent the 
world not only in rigid formal terms, but 
also in informal and flexible terms. Such 
artifacts are not simply optional, informal 
additions to the formalisms expressed in 
the programming language, but comple- 
mentary representations that are necessary 
and critical to the mental structuring and 
assimilation of the final design by a soft- 
ware engineer. 

Note that I distinguish between the no- 
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tion of a conceptual abstraction (“a process 
management module”) and a specific in- 
stance of a conceptual abstraction (“the 
specific process management module in  
the Unix system”). This distinction i s  
important because each has a distinct role. 
Conceptual abstractions are implemented 
in the domain model as object-oriented 
classes that take an active role in identify- 
ing instances of themselves in  the code 
being interpreted. Thus, they represent the 
set of realizations of that object type in the 
target code, whereas an instance repre- 
sents a single, specific realization of that 
object in the code. The sidebar, “Concepts 
of object-oriented programming,” further 
clarifies the distinction between class and 
instance. 

If a recovered design contains this addi- 

tional kind of entity - the conceptual 
abstraction instance- how do we identify 
it? And, what is the character of such an 
entity? 

An instance of a conceptual abstraction 
has two important properties, one that i s  
structural and one that i s  semantic or asso- 
ciative. The associative part of the 
abstraction i s  represented in the domain 
model by a “linguistic idiom.” The struc- 
tural part i s  represented by various kinds of 
idioms, depending on the kind of informa- 
tion being represented. Introducing asso- 
ciative connections and structural patterns 
provides a partial formalization for infor- 
mal conceptual abstractions. 

Structural pattern. A conceptual ab- 
straction’s first property i s  its ability to 

represent (that i s ,  both hide and relate) 
some set of lower-level details. For ex- 
ample, a single concept such as “a process 
management module”can be used in many 
contexts to represent a l l  of the massive 
detail that i s  a process management mod- 
ule, keeping the designer from becoming 
overwhelmed by the detail. This property 
i s  similar to the conventional software- 
engineering notion of expressing designs 
as top-down refinement structures. Its 
function i s  to describe the successively 
burgeoning levels of detail in a design. A 
conceptual abstraction’s structure has  an 
additional, operational role as a pattern 
that defines the kinds of source code struc- 
tures that would express the abstraction. 
This pattern i s  used to search for and iden- 
tify specific source code structures that are 

Concepts of object-oriented 
programming 

The domain model in the Desire design recovery system 
i s  strongly related to the concepts of object-oriented pro- 
gramming systems (OOPS), such as Smalltalk,’ C++,2 and 
the Common Lisp Object System (CLOS). Central to OOPS 
is  the concept of a class, which is a package of local data 
items that defines the state of an instance of the class, and 
ti set of functions that manage that state. An instance of a 
class (also cqlled an object) is a unique ~ o p y  of the local 
data items; to put it another way, it is a specific concrete 
rnember of the class. Each data item is called an instance 
variable. The functions of ,the class are conventionally 
called methods. 

An example of a class would be line-segment, which 
might have instance variables x, y, and length that define 
the position of the line segment’s end point and its length. 
There might be many specific lines in a drawing, and each 
would be represented by an instance of the class, that is, a 
data record containing three values for x, y, and length. 
The methods of such a class might be named create, de- 
stroy, move, rotate, stretch, draw, and so forth. These 
methods would operate on the instance variables to per- 
form various operations on the line. 

To call such a method, we would send a message to an 
instance of the class. Sending a message is a generaliza- 
tion of the notion of a function call, and it requires at least 
two pieces of information to perform the invocation: a 
pointer to an instance (from which the system can deter- 
mine which class to look in for the method definition) and 
the name of a method (such as move). The method name 
is called the selector. These two pieces of information 
uniquely determine the specific method to be called. Some 
object systems. such as CLOS, provide an optional, special 
case where additional items can be required, allowing a 
liner-grained determination of the specific method to be 
called. 

A key concept in OOPS is inheritance, which allows us 
to specify a new class by defining only the differences be- 
tween it and another class, called its superclass. For ex- 
ample, we could specify a class fat-line-segment by de- 
claring it as a subclass of line-segment and describing the 
differences. We would say line-segment is the superclass 
of fat-line-segment. Suppose this new class has an addi- 
tional instance variable named width, which defines the 
width of the line to be drawn. Its instance records will eon- 
tain variables x, y, and length, inherited from line-segment, 
and the variable width, from fat-line-segment‘s definition. 
Similarly, we would write a new version of the draw and 
create methods to accommodate the operational differ- 
ences between simple line segments and those with width. 
These new methods would be called whenever the draw or 
create messages were sent to one of fat-line-segment’s 
instances. When other messages, such as stretch, are 
sent, the inherited methods from line-segment would be 
called. 

frames, a slight variation of the concept of classes, 
come from the field of artificial intelligence. They usually 
have more built-in conventions for the instance variables 
(commonly called slots in frame systems) than simple 
OOPS classes do. They therefore have more associated 
runtime support. Frames systems often include conven- 
tions and runtime support for expressing relationships be- 
tween instance records. For example, semantic net appli- 
cations often provide frame conventions and built-in facili- 
ties that search the frame network for sets of instances 
that resemble but do not exactly match each other. Such 
frame conventions and support are often built on top of a 
conventional OOPS system. 
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plausible instances of the conceptual ab- 
straction. 

Associative connections. A conceptual 
abstraction’s second property is its rich set 
of informal, natural-language associations 
that establish its contextual framework for 
human understanding. That is, the concept 
of a process management module has 
semantic connections to other informal, 
semantic concepts such as context switch- 
ing, state saving, andmultitasking. Each of 
these concepts allows association of the 
concept of a process management module 
with a large body of knowledge that can 
help an engineer interpret the design of 
some specific process management mod- 
ule or plan the design of a new one. 

These two properties provide clues to 
the role of conceptual abstractions in deal- 
ing with large complex designs. The struc- 
tural property provides a way to handle lots 
of detail without being overwhelmed, as 
well as a way of describing the application 
patterns one expects to find in programs. In 
contrast, the associative linguistic prop- 
erty offers a way to deal with partially 
specified (fuzzy) design objects within the 
universe of informal, natural language- 
based semantics. These properties relate to 
two parallel and complementary models 
- the software-engineering representa- 
tion model and the natural-language se- 
mantic model. 

The importance of informal informa- 
tion. An example will illustrate the impor- 
tance of the informal aspect of conceptual 
abstractions. Consider the C function in 
Figure4. This is areal function taken from 
a multitasking window system’ with the 
comments removed and meaningful iden- 
tifiers mapped to semantically empty 
symbols. What could an analyst tell about 
the computational intent of this function? 
Precious little. About all he or she could do 
is paraphrase the relations expressed in the 
programming language. For example, the 
analyst could describe that the function 
fOOOl calls f0002 with arguments that are 
global arrays (such as gOOO1) of structures 
containing some fields (such as so001 and 
~0002) .  Even if the definitions of all of the 
functions (f0002, f0003, etc.) were avail- 
able and similarly transformed, the com- 
putational intent would remain unclear. 
What is worse is that, without the informal 
information, the computational intent of 
these functions might not be unique. There 
could be a number of valid interpretations. 

The example severs the connection be- 
tween the artifact and the semantics of the 
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#include <stdio.h> 
#include “h0001 .h” 
#include “h0002.h” 
#include “h0003.h” 
f000 1 (a000 1 ) 

unsigned int a000 1 ; 
I 
unsigned int io00 1 ; 
f0002(g0005,d000 1 ,d0002); 
f0002(a000 1 ,d0003,d0002); 
f0003(g0001 [a0001 ] .so001 ,go001 [a000 l].sOOO2); 
go006 = a000 1 ; 
io001 = g0001[a0001].s0003; 
if( !f0004(i0001) && (gOOO2->gOOO3)[iOOOl].sOOO4 == d0004) 

1 
fOO05(iOOO 1 ); 

Figure 4. Function with no informal semantic clues. 

#include <stdio.h> 
#include “pr0c.h” 
#include “window.h” 
#include “g1obdefs.h” 
change-window(nw) 

unsigned int nw; 
I 
unsigned int pn; 
border-attribute(cwin,NORM_ATTR,INV_ATTR,INV-ATTR); 
border-attribute(nw,NORMHLIT-ATTR,INV-ATTR); 
move-cursor(wintbl[nw].crow,wintbl[nw].ccol); 
cwin = nw; 
pn = wintbl[nw].pnumb; 
if(!outrange(pn) && (g->proctbl)[pn].procstate == SUSPENDED) 

t 
resume(pn); 

Figure 5. Function with some informal semantic clues. 

problem domain, eliminating associations 
between the program and our informal 
knowledge of the world. Interpretation and 
understanding of the program has become 
impossible in any deep sense. Thus, we can 
see that connotation plays an important 
role in the process by which people deal 
with, interpret, and understand programs. 

It is exactly this kind of semantically 
impoverished representation that we usu- 
ally give to automated tools. If people have 
difficulty dealing with this kind of repre- 

sentation, why should we expect a com- 
puter to be more successful? 

So what sort of informal information is 
required to understand the program in a 
nonsuperficial way? Let us consider a 
slightly enhanced version of this program. 
Figure 5 maps the symbolic names back to 
those used in the original code. Here, the 
names of the functions are more meaning- 
ful and, if the reader understands a bit 
about multitasking and window systems, 
he or she can probably make some good 
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#include <stdio.h> 
#include “pr0c.h” 
#include “window. h” 
#include “g1obdefs.h” 
change-window(nw) /*Change current window to window nw*/ 

/*Number of target window*/ unsigned int nw; 
1 
unsigned int pn; 

/*Restore border of current window to un-highlighted*/ 
border-attribute(cwin,NORM-ATTRJNV-ATTR); 

/*Highlight border of new current window*/ 
border-attri bute( nw,NORMHLIT-ATTRJNV-ATTR); 

/*Move the physical cursor to the new window where the cursor was 
left, and make nw the current window*/ 
move~cursor(wintb~[nw].crow,wintbl[nw].ccol); 
cwin = nw: 

/*Resume the process associated with the new window if it is 
suspended.*/ 
pn = wintbl[nw].pnumb; 
if( !outrange(pn) && (g->proctbl)[pn] .procstate == SUSPENDED) 

I 
resume(pn); 

Figure 6. Function with many informal semantic clues. 

guesses about the operation. The name of 
the function suggests that it changes which 
window is currently active, with the new 
window probably indicated by the argu- 
ment nw. Further, we can guess that the 
function border-attribute alters the visual 
appearance of the windows’ borders, the 
function move-cursor moves the screen 
cursor to some position in the new win- 
dow, and the function resume allows some 
suspended process to run again (probably 
the process associated with the new win- 
dow). The variables similarly come alive 
with meaning: wintbl is probably the win- 
dow table and probably has fields ccol and 
crow that keep track of the cursor (inferred 
from their use in the call to move-cursor). 

By restoring the comments from the 
original code (see Figure 6), we can cor- 
roborate several of our guesses and en- 
hance our understanding of some of the 
functions and variables. 

This exercise should make it clear that 
the informal linguistic information that the 
software engineer deals with is not simply 
supplemental information that can be ig- 
nored because automated tools do not use 
it. Rather, this information is fundamental. 
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It provides the ability to determine the 
computational intent of code in a way that 
is impossible with just the source code 
denuded of its informal semantics. 

If we are to use this informal informa- 
tion in design recovery tools, we must 
propose a form for it, suggest how that 
form relates to the formal information 
captured in program source code or in 
formal specifications, and propose a set of 
operations on these structures that imple- 
ments the design recovery process. To 
accomplish these goals, we must first ana- 
lyze the proposed design recovery system 
in a bit more detail. 

A model-based design 
recovery system 

What would a design recovery system 
look like? Figure 7 is a system-level de- 
scription of a model-based design recov- 
ery system (called Desire) showing some 
of the sources of information used to re- 
cover designs. They include the code of 
existing systems because such code COII- 

tains a large amount of important informa- 
tion, but there must be other sources as 
well. Much design information cannot be 
formally captured in the program source 
code because programming languages do 
not contain the constructs necessary to 
express information such as the informal 
conceptual abstractions behind the code. 
For example, the informal conceptual ab- 
stractions behind the change-window 
function discussed earlier include win- 
dows, processes, cursors, and the opera- 
tions on these entities. And these concep- 
tual abstractions are woven into a rich set 
of knowledge about the domain that pro- 
vides clues to understanding the formal 
source code structures. 

Design recovery results in a hypertext 
web4 of information that weaves together 
informal ideas (e.g., the concept of a proc- 
ess), software engineering artifacts (e.g.. a 
dataflow diagram of aprocess switch), and 
details of specific examples of these enti- 
ties as embodied in code (e.g., one specific 
subroutine for process switching). This 
web is projected into externalized reports 
to help the software engineer understand a 
specific target system and into internalized 
data structures for use by the Rose reuse 
~ y s t e m . ~  Since the web is built out of hy- 
pertext frames, the design recovered by the 
Desire system is simply a set of data struc- 
tures that represent the conceptual 
abstractions and express the semiformal 
relationships among them (see sidebar, 
“Concepts of object-oriented program- 
ming”). 

To understand how this model-based 
design recovery system works, the nature 
of the data items in the model, and how 
those data items are used, consider the 
following typical design recovery session 
using the multitasking window system as 
the application domain. Using the process 
model of design recovery as a guide, I will 
first define a set of data objects (called 
idioms) that implement the structural pat- 
terns and associative connections of con- 
ceptual abstractions. The example idioms 
codify the domain model’s expectations of 
the entities and structures in a typical 
multitasking window system running on a 
personal computer. I will then informally 
describe how these domain objects behave 
during the semiautomated recovery of the 
design of a specific multitasking window 
system. This scenario is analogous to a 
nonautomated design recovery performed 
by an unaided software engineer. 

An example. We start to discover the 
structure of this multitasking window sys- 
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Figure 7. The Desire model-based design recovery system. 

tem by looking for key structures, based on 
our knowledge or expectations of the prob- 
lem and application domains. A knowl- 
edgeable engineer would expect to find a 
process table, a window table, a window 
management module, and a process man- 
agement module, among other structures. 
(I offer a detailed example of such a system 
elsewhere.*) 

In Desire’s domain model, such expec- 
tations are represented by object classes 
expressed in the Common Lisp Object 
System (CLOS). In contrast to object 
classes that implement a window manage- 
ment module or a process management 
module, these domain model classes 
operate on the implementations of window 
management modules or process manage- 
ment modules. Specifically, domain model 
objects search for instances of the key 
structures within the code (perhaps with 
human help) and bind their instance vari- 
ables to these key structures, subject to the 
analyst’s approval. An instance of such a 
domain object represents an occurrence of 
a concept such as a window management 
module or a process management module 
within a specific segment of source code. 
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The instance variables of that instance 
point to the segments of code that imple- 
ment the domain object. 

Thus, the first step of recovery is to 
create a set of instances of the idiomatic 
structures expected. The engineer exam- 
ines the domain model, finds an object 
class describing a multitasking window 
manager, and creates an instance of that 
object. As a side-effect, other instances 
that define the detailed substructure of a 
multitasking window manager are created 
as a substructure of this first instance. This 
structure of instance records represents an 
architectural overview of a multitasking 
window manager that might look 
abstractly like the structure in Figure 8, 
where the relation on the arcs is the sub- 
parts relation. Over the course of the de- 
sign recovery process, the whole set of 
design details will evolve as a rich sub- 
structure beneath this first set of instances. 
Now let’s follow the evolution of that 
substructure in more detail. 

Each of the instances just created can 
bind to the source code in one of two ways: 

(1) It can bind directly to some segment 

i’ 

Process 
table 

Window 
table 

management 
module 

Window 
management 
module 

. . .  

window 
manager 

Figure 8. Initial pattern instance rec- 
ords expressing an architectural over- 
view. 

of code (associatively). 
(2) It can bind indirectly through a 

subinstance (that is, through a close 
match of the substructures to the 
program code). 
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Domain model 

Figure 9. Abstract design idioms within a domain model. 

For example, the process table class in 
Figure 9 contains idioms for both kinds of 
binding. 

Direct binding is implemented via a 
linguistic idiom, which represents the 
expected linguistic form of a conceptual 
abstraction such as process table. This id- 
iom might be implemented as a set of 

regular expression patterns that match the 
various natural-language forms in source 
code identifiers or comments. For ex- 
ample, the pattern [pr.clprc] [.?I .. 1...1.... ] 
[t.bltbl] defines the linguistic expectations 
for process table. Of course, we will occa- 
sionally encounter an expression of the 
conceptual abstraction that the existing 

process proctbl[ MAXPROCS] ; 
. . . .  
. . . .  

typedef struct procentry 
{ 
unsigned int savesp; 
unsigned int savess; 
unsigned int pspseg; 
unsigned int windno; 
unsigned int procstate; 
char procname[MAXPNAME+ 11; 
int pnum; 

) process; 

/* Process tbl array */ 

/* Process table entry */ 

/* Saved sp register */ 
/* Saved ss register */ 
/* PSP seg addr this proc */ 
/* Window number this proc */ 
/* Process state *I 
/* Process name */ 
/* Process number for this entry */ 

Figure 10. Structure found via search of source code. 
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patterns do not find. The addition of such 
cases helps the domain model grow and 
evolve. 

How would the recovery system use 
these patterns? We would seldom want to 
recklessly search a large system to find all 
of the associations. Not only would such a 
search take a large amount of computation 
time, it also would probably introduce a 
large number of false positive hits, thereby 
taking a lot of analyst time to sort out the 
results. Instead, we would prefer to be 
more selective and use our knowledge of 
programs, systems, and domains to focus 
the search. For example, in the C language 
we would expect to find the definition of 
the process table in some header file and so 
would narrow our initial search to those 
files. This search might find the chunk of 
code in Figure 10. 

Given this structure as a starting point, 
the system uses the data object idiom that 
defines the substructure of a process table 
and recursively applies the search against 
the code structure in Figure 10, using the 
patterns from the classes of each of the 
subparts of a process table. (Actually, I 
have simplified this example by ignoring 
the intervening conceptual structure- the 
process table entry.) Figure 11 illustrates 
this recursive step, which binds the fields 
within the source code definition of the 
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I I I process proctbl[MAXPROCS]; /* Process tbl array */ 
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Location of Location 
saved envir. of process 

I I tyeeief ‘struct procentry I’ Process table entry *I 

unsigned int savesp; I’ Saved sp register *I 
unsigned int savess; I* Saved ss register *I 
unsigned int pspseg; I’ PSP seg addr this proc *I 
unsigned int windno; I* Window number this proc *I 
unsigned int procstate; I* Process state *I 

} process; 

char procname[MAXPNAME+l]; I’ Process name */ - intpnum; /* Process number for this entry *I 
1 I 1 1  

1‘ 
Figure 11. Bindings to substructures in source code. 

process table to the instance records that 
define the expectations of those fields. 

The recovered design in Figure 8 has 
now evolved into that in Figure 12, where 
the dashed lines show the bindings be- 
tween abstractions and code. Note that the 
matching of idiom pattern to code is inex- 
act, with some instances of the idiom un- 
bound and some elements of the struct 
unexplained. We can typically expect an 
automated aide to produce only partial 
matches. leaving part of the interpreta- 
tional work to the software engineer. Thus, 
the analyst will likely have to specialize 
(edit) the idiom further to reflect the spe- 
cific case. However, the partial match 
provides enormous benefit by focusing the 
analysis and establishing a broad frame- 
work in which to perform the remaining 
interpretation. The partial match provides 
a starting point by identifying some of the 
substructures of the idiomatic form, mak- 
ing completion of the interpretation far 
simpler than starting from scratch. 

So, for data structures in the source 
code, at least two kinds of information 
express the key idiomatic features of the 
source code. The linguistic idiom ex- 
presses the natural-language tokens (gen- 
eralized into search patterns) that we ex- 
pect to be associated with key data struc- 
tures. The data object idioms express the 
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substructure relationship within complex 
data structures. We can exploit structural 
idioms to discover design structures for 
the first time (in a top-down manner) as 
well as to verify associations with large- 
scale structures discovered earlier (as a 
bottom-up verification). 

This pattern of linguistic and structural 

design idioms repeats itself when we ex- 
amine what kinds of structures the domain 
model must contain to describe the expec- 
tations about module structure, dataflow 
plans, and so forth. For example, in the 
context of a Unix-like multitasking sys- 
tem, we would expect to find a process 
management module with routines for 

I 

Mu It i tas kii 
window 
manager 

Process 
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Window 
table 
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management 
module 

Window 
management table 

. . .  
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Process 
state 

Process 
name 

Process 
number 

Figure 12. Pattern of instance records with some bindings to code. 
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creating a process, resuming a process, 
suspending a process, and so forth. Much 
as in the data structure idiom, these expec- 
tations form an initial framework that 
might fuzzily match some functions in  the 
code. From here, the software engineer can 
read and analyze the code and then special- 
ize the domain model patterns to fit the 
current case. Other artifacts such as dat- 
aflow schemas operate in a similar fashion. 

Using idioms to guide the search and 
then act as the skeletal organizing structure 
for the recovered design offers two impor- 
tant benefits: 

(1) The domain model idioms encode 
expectations as preformed queries, elimi- 
nating the need to constantly reenter these 

query forms during program analysis. 
(2) The system records the resulting 

design in  terms of both informal linguistic 
abstractions and semiformal software 
engineering structures. 

Desire prototype and 
current work 

MCC has developed a prototype of a 
design recovery system called Desire 
Version 1.0. The system i s  intended to 
explore only that aspect of design recovery 
that does not depend on the domain model. 
Thus, i t  is an interim system designed to 
lay the foundation for the full Desire sys- 

tem by providing a baseline of facilities to 
process the information explicitly found in 
source code. 

Figure 13 shows Desire Version 1.0 in 
operation. The system consists of three 
major parts: a parser, a set of post- 
processing functions, and the PlaneText 
hypertext system4 as the presentation en- 
gine. The parser processes a set of C files 
for a given system and produces a set of 
parse trees. We anticipate the need to use 
much of the informal linguistic informa- 
tion encoded in variable names, comments, 
and the like, so the parser must take special 
care to preserve this information. 

A set of postprocessors takes the parse 
trees as input and produces a dictionary 
containing information on functions, the 

Related work 

Commercial reverse engineering tools 

A number of reverse engineering tools (closely related to 
reengineering tools) have appeared on the market recently. 
These tools solve part of the problem of recovering the de- 
sign of an existing system. Examples are Cscope, cxref, 
BachmanlData Analyst, and Meta’s Design12.0. While 
these tools find, present, and analyze information in the 
source code (or in the data dictionary in the case of the 
BachmanlData Analyst), they do not reconstruct, capture, 
and express design abstractions that are not explicitly rep- 
resented in the source code-related representations. Such 
design abstractions are a large part of what humans use to 
understand, modify, adapt, and otherwise deal with sys- 
tems and programs. The need for and absence of such ca- 
pabilities should indicate the direction in which these tools 
will likely evolve, and should be a mandate to push the 
technology in that direction. 

We can loosely classify commercial reverse engineering 
tools (in the broadest sense of the term “reverse engineer- 
ing”) into the following categories: 

test coverage analyzers; 
debuggers and execution monitors; 
source-to-source translators; 
cross reference facilities; 
code reformatters, pretty printers, and restructurers; 
structure and metric analyzers; 
file comparators; and 
CASE-oriented reverse engineering (and reengineer- 
ing) tools. 

Since these tools are commercial, information about 
them is limited. Nevertheless, Horton’ and Aranow2 provide 
a short overview plus information on specific products and 
vendors. In addition, Sneed and Jandrasics3 describe a 
prototypical CASE-oriented reverse engineering system. 

Related research 

In contrast to commercial reverse engineering tools, the 
tools in the research community come closer to our notion 
of design recovery. Both sets of tools focus most often on 
program understanding, but there is a subtle difference in 
the research goals. Most tools in the area of program under- 
standing have focused on very small-scale problems to 
achieve precise and complete formal specifications of the 
source code. Further, they typically have not focused as 
much on informal information. In contrast, our approach 
sacrifices formal completeness and precision for scale. In 
the long run, these two approaches will likely be comple- 
mentary rather than mutually exclusive, with each providing 
aspects missing in the other. 

Several researchers have been working on the problem of 
understanding what a program is intended to do.4-7 Some 
use information drawn largely from the programming lan- 
guage domain, such as Wills’ recogni~er.~ Others incorpo- 
rate more knowledge from the problem domain. In most 
cases, the scale of the target programs is quite small - 
tens or hundreds of lines of code. The most recent 
Programmer’s Apprentice work deals with larger compo- 
nents but does not yet deal with large, industrial sized com- 
ponent~.~ 

Most of this work depends on analysis of the low-level, 
formal details and, therefore, emphasizes a full and exact 
match of the structure for recognition. The computational 
load required by such an approach suggests that scaling up 
to industrial sizes will be quite difficult. People appear to be 
successful at program recognition because they can attend 
to a few key features and make tentative, plausible matches 
based on similarity rather than exactness. Further, most of 
the time, many of those few key features are informal. Of 
course, humans supplement such recognition with many 
other approaches for verification and detailed understand- 
ing, but the initial narrowing of attention based on informal, 
partial clues seems to be critical to handling scale without 
being overwhelmed by detail. 

It seems likely that the understanding and recovery ap- 
proaches can be productively merged. That is, an initial 
search strategy based on informal, partial clues, followed by 
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files that contain them, the global data 
items defined, where they are defined, and 
where they are used. lnformal information, 
such as that in the comments, is associated 
with the target program's function defini- 
tions and data item definitions. In addition, 
the postprocessors compute and store the 
various relationships between these items 
(such as calls, uses, and depends) in the 
dictionary. 

Once this information is computed, 
another postprocessor computes a Plane- 
Text web and invokes the PlaneText 
browser to exhibit the web. PlaneText 
computes various views that exhibit some 
relationships (such as calls) and suppresses 
others. Thus, if the user wants to see a call 
lattice or the relationship between data 

items and files, the system can compute 
each of these as a separate browser view. 

The screen dump in Figure 13 suggests 
some of the prototype's functionality. The 
prototype provides a set of predefined 
Prolog queries for computing a variety of 
questions about the data in the dictionary. 
These queries include low-level questions 
such as "What is the set of functions that 
call function x?" as well as higher-level 
questions such as "Does any function de- 
fined in file A call any function defined in 
file B?" or "Compute the set of functions 
that appear to be utility functions."This set 
of queries is evolving to include a number 
of complex program analysis functions. 
Since the user can build on these queries, 
the question set can be tailored to any 

specific application domain. 
In Figure 13, the user has used one of the 

predefined Prolog queries to ask for all 
functions that refer to apiece of data named 
call-to-times. The browser responds by 
highlighting all of the functions found by 
the query. The user inspects the visual 
design browser and identifies the name of 
the file (pow2.c) that contains the defini- 
tion of one of these functions (power). The 
user then opens a window cn that file 
(lower left-hand corner) and uses Plane- 
Text's regular expression-based search to 
find the location of the variable 
calls-to-times. Of course, as we determine 
which sequences in the prototype are most 
useful, we will replace them with a single 
user command. 

the more detailed kind of analysis used in the Programmer's 
Apprentice, would provide a powerful and scaleable ap- 
proach to automating more of the program comprehension 
process. This appears to be the most successful long-term 
direction for this kind of research. 

Other work is more loosely related but nevertheless 
shares some ideas with our work. Perhaps the overriding 
theme of this work is the integration of CASE, hypertext (or 
hypermedia), and knowledge-based technologies. In fact, 
some of our own work that contributed to our current de- 
sign-recovery notions (my large-scale reusea and Lubars' 
Rose9 system) falls in this class, although the hypertext as- 
pect is largely absent in Rose. The work of Ambras and 
O'DaylO and Bigelowll shares this theme to a greater or 
lesser extent, with Bigelow emphasizing hypertext and Am- 
bras and ODay emphasizing knowledge-based representa- 
tions. Most of the work in this category is, in principle, able 
to handle large-scale information bases. 

resembles the research re- 
ported in the current article. These researchers have solved 
the problem of scaling up but are not creating the kind of 
high-level, informal conceptual abstractions that Desire fo- 
cuses on. Of course, creating such abstractions was not 
particularly important to Arango et  al. because they wanted 
to port their target program (Draco,13 in this case) com- 
pletely automatically from one computing environment to 
another. From this point of view, their system is more simi- 
lar to source-to-source translation and restructuring systems 
than reverse engineering systems of the variety I have dis- 
cussed. 

Abstractly, Arango et al. are also trying to recover de- 
signs, but some differences exist between their focus and 
ours. Their design recovery model focuses more on the 
structure of the transformations and the operations on trans- 
formations than it does on the structure of and operations 
on the design entities themselves. Our focus is the reverse 
of this. Further, and perhaps more importantly, their model 
makes no use of informal information because it is based on 
a commitment to complete automation. On the other hand, 
because our model strongly Involves people in the design 
recovery process, we must make heavy use of informal in- 
formation to help human understanding. 

The work by Arango et 
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Figure 13. First design recovery prototype: Desire Version 1.0. 

Desire Version 1.0 also analyzes the 
source code and creates a graphical dia- 
gram describing its interpretation of the 
program's module structure. Based on the 
user's request, this analysis can variously 
depend on the program's cohesion, its data 
coupling, and so forth. 

As a separate research task, we have 
used PlaneText4 to sketch out a domain 
model drawn from the area of multitasking 
window systems.2 This research task uses 
PlaneText as a simple design aid, and we 
have not yet integrated the domain model 
with the Desire Version 1.0 prototype. To 
do so, we are converting this hypertext 
design of the domain model into a set of 
CLOS classes that are the active or im- 
plementation form of the domain model. 
This model bears a strong relationship to 
the semantic models created with frame 
languages like KL-One. The primary dif- 
ference is that the CLOS classes possess 

more specialized, local behavior. The 
classes capture 

the isa or superclass/subclass lattice of 
the entities in the domain (e.g., a proc- 
ess-table is a subclass of table); 
the informal patterns for expressing 
the entities in the domain (e.g., a proc- 
ess might have a variety of abbrevia- 
tions and synonyms); 
the slots that are to contain the ex- 
pected substructure of a concept in- 
stance (e.g., aqueue will have aqueue- 
entry slot); 
restrictions on the slots that constrain 
what values the slot can have (e.g., a 
restriction on the class of the value in 
the slot); and 
methods that provide the entity's be- 
havior (e.g., displaying the concept, 
searching for possible instances, and 
binding slots to instances). 

A fair amount of work is now aimed 
at determining what the interface 
should look like and how it 

should behave. Specifically, we are work- 
ing on methods to visually relate the recov- 
ered abstract concepts to the portions of the 
program to which they refer. 

More recently, we have begun a series 
of experiments to refine our notions of 
search strategies for informal information 
and to allow fuzzy matches of expecta- 
tions. We believe that, in addition to the 
simple search mechanisms described ear- 
lier, we will be able to apply ideas from 
connectionist research5 to perform some 
of the fuzzy matches. These searches take 
advantage of the domain model's structure 
to allow associative searches that return 
items based on their indirect associations 
with the features sought. This part of 
the research is in an early prototyping 
stage. 0 
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