
Design Recovery for
Maintenance and Reuse

Ted J. Biggerstaff

Microelectronics and Computer Technology Corporation

oftware maintenance and harvest-
ing reusable components from soft-
ware both require that an analyst

reconstruct the software’s design. Unfor-
tunately, source code does not contain
much of the original design information,
which must be reconstructed from only the
barest of clues. Thus, additional informa-
tion sources, both human and automated,
are required. Further, because the scale of
the software is often large (hundreds of
thousands of lines of code or more), the
analyst also needs some automated sup-
port for the understanding process.

Design recovery recreates design
abstractions from a combination of code,
existirig design documentation (if avail-
able), personal experience, and general
knowledge about problem and application
domains. (I use the term “abstraction” in
its general sense and specifically not in the
abstract-data-type sense. Thus, the
abstra1:tions I discuss are generalized
structures that contain fewer details than
found in the source code. Any reference to
ADTs will be explicit.)

The recovered design abstractions must
include conventional software engineer-
ing representations such as formal specifi-
cations, module breakdowns, data

The Desire system
helps software

engineers understand
programs by analyzing

code, relying on the
analyst’s own
reasoning, and
drawing on a

knowledge base of
design expectations.

abstractions, dataflows, and program de-
scription language. In addition, they must
include informal linguistic knowledge
about problem domains, application idi-
oms, and the world in general. In short,
design recovery must reproduce all of the
information required for a person to fully

understand what a program does, how it
does it, why it does it, and so forth. Thus,
design recovery deals with a far wider
range of information than found in conven-
tional software engineering representa-
tions or code.

Design recovery occurs across a spec-
trum of activities from software develop-
ment to maintenance. The developer of
new software spends a great deal of time
trying to understand the structure of simi-
lar systems and systems components. The
software maintainer spends much of his or
her time studying a system’s structure to
understand the nature and effect of a re-
quested change. In each case, the analyst is
involved in design recovery. Thus, design
recovery is a common, sometimes hidden
part of many activities scattered through-
out the software life cycle.

A system expert provides one of the
most effective ways to recover the design
of a foreign system by answering ques-
tions, shifting attention quickly to ger-
mane areas of the program, interpreting
code segments in human (informal) terms,
and so forth. An automated system would
need access to the same kind of “in-head’’
expertise. That is, it would need a knowl-
edge base - a domain model - that cap-

36 OO18-9162/89/07OO-~36$01 .OO 01989 IEEE COMPUTER

Identify module Establish
and data abstraction-to

Program code abstraction Recover design code
in C groupings abstractions

Design component abstractions recovered

Flow Control Informal Informal Design Module
diagrams concepts and rationale refinement

relations

Control

Module
refinement

@Design rationale

Informal
concepts and
relations

Informal
diagrams

Figure 1. The basic design recovery process.

tures this expertise. The information must
be domain oriented, must include more
information than the analyst might find in
the code alone, and must guide and assist
the process of understanding the code. The
domain model differentiates design recov-
ery research from such superficially simi-
lar efforts as reverse engineering, which
automatically abstracts code to a specifica-
tion level such that the specifications can
be modified and revised code can be auto-
matically regenerated. In fact, the domain
model is central to the overall success of
any attempt to automate portions of the
design recovery process.

Design recovery in the broad sense is so
inherently unstructured and unpredictable
that few tools have been available to help
the analyst search through code to find
patterns and structures of interest. Excep-
tions include simple search tools like grep
(a pattern searching tool for Unix) and
some code analysis facilities in tools like
Cscope (an interactive cross-reference
tool, also for Unix). Further, there have
been few tools to help the software engi-
neer capture, organize, and present the
design information once recovered, other
than text editors, outliners, and computer-
aided software engineering tools.

To show how we might extend the auto-
mated assistance available to the software
engineer, this article introduces the con-

cept of design recovery, proposes an archi-
tecture to implement the concept, illus-
trates how the architecture operates, de-
scribes the progress toward implementing
it, and compares this work with othei
similar work such as reverse engineering
and program understanding.

The design recovery
process

A key objective of design recovery is to
develop structures that will help the soft-
ware engineer understand a pregram or
system. Understanding is critical to many
activities - maintenance, enhancement,
reuse, the design of a similar new system,
and training, to name a few. This section
describes the process of design recovery as
it is applied to maintenance and to the
population of reuse and recovery libraries.
I then outline how a recovery knowledge
base (the domain model) can assist in some
of the steps of design recovery.

The design recovery process consists of
three steps:

Step one: supporting program under-
standing for maintenance. Figure 1 illus-
trates the steps of the design recovery
process that help a software engineer un-
derstand a C program. Other classes of

languages, such as object-oriented lan-
guages, require amodest variation of these
ideas.

The analyst first looks for large-scale
organizational structures such as the sub-
system structure, module structure, and
important data structures. Next, he or she
recovers various useful design structures
and expresses them in abstracted forms,
such as informal diagrams, informal con-
cepts and relations, design rationale, mod-
ule structures, flow, and control. In the
course of this, the software engineer keeps
track of the relationship (the mapping)
between the various abstractions and the
segments of code that implement them.
Now, let us look at the kinds of questions a
software engineer asks when trying to
understand a system.

What are the modules? Some program-
ming languages formalize the notion of a
module and provide constructs todefine it,
so the module and subsystem structures are
easy to determine directly from the source
code. For those languages that do not pro-
vide constructs, the software engineer
must use acombination of human intuition
and experience, clues from the source code
structures, and some knowledge (expecta-
tions) of the conventional organization
patterns for applications of the type under
consideration.

July 1989 37

Informal Generalize
concepts and abstractions
relations

Aostraction-to-cod
mappin

rationale Informal
diagrams

Integrate into reuse library
and domain model

3
~ _ _ _ _ _ _ ~~ ~~

Figure 2. Design recovery extensions supporting reuse library population.

Expectations derived from organiza-
tional conventions are powerful and effi-
cient mechanisms for helping the software
engineer understand a system. For ex-
ample:, based on their knowledge of typical
organizational patterns, experts in the
domain of Unix-like multitasking code
would expect to find a module that does
process management and contains routines
for the creation, suspension, and deletion
of processes. Of course, such expectations
are typically generalizations and, there-
fore, are only approximations of such
multii.asking code. Thus, our expectations,
drawn from various domains, provide
fuzzy patterns to guide our search and
analysis of foreign code. But, because of
their fuzziness, these patterns can do no
more than serve as guides.

In addition to identifying large-scale
structures such asmodules, we also need to
associate the structures with informal
semantic concepts. That is, we need to
provide semantically rich natural-lan-
guage abstractions, or conceptual
abstrmtions, that represent the essential
concept underlying the module. For ex-
ample, process management would be a
good conceptual abstraction to associate
with the example module discussed above
because the phrase will help the software
engineer understand the target system by

38

referencing his or her existing mental
concept and activating a variety of impor-
tant and powerful expectations.

I will formalize these conceptual
abstractions to the point that some measure
of intelligent computer processing can be
implemented on them. I am not suggesting
fully automating the design recovery proc-
ess; the degree of automation is unlikely to
ever go beyond the notion of an assistant
that can perform wide-ranging searches
and suggest domain-based recovery strate-
gies to the software engineer. However,
even these limited capabilities would be
quite valuable to an analyst faced with
hundreds of thousands of lines of foreign
code.

What are the key data items? Among the
other first questions an analyst asks are

What are the important data items?
What abstract informal concepts do
they relate to?
What are their relations to the modules
just identified?

For example, in the multitasking window
system example, the analyst might find a
process table containing entries that de-
scribe the processes currently running
under the multitasker. The more experi-

ence the analyst has with multitasking
systems, the richer the set of expectations
that he or she will have about such a sys-
tem.

What are the software engineering arti-
facts? As shown in Figure 1, the under-
standing process recreates the software
engineering-oriented design artifacts and
expresses them whereverpossible in terms
of the module and data abstractions recov-
ered earlier. The specific artifacts captured
are determined to some extent by the proc-
ess model adopted by the programming
organization. For example, some compa-
nies will use a program description lan-
gauge, dataflow, module refinement, and a
simple datadictionary. Others will depend
on different design artifact sets. The tech-
niques under investigation at MCC are
flexible enough to apply to a broad range of
such artifacts.

What are the other informal design
abstractions? For the set of abstractions to
be really effective, we need other informa-
tion structures, many of which are not as
well defined and formal as the software
engineering-oriented design artifacts. For
example, design rationale might be useful,
perhaps stated in terms of issue-based in-
formation systems (IBIS) nets.' Further,

COMPUTER

natural-language prose is unavoidable if
we want a really effective model of the
design. Similarly, informal diagrams de-
scribing abstract views of the target system
are often quite useful. Thus, we must ex-
pect to recover a wide variety of design
artifacts that contain a mixture of formal
and informal information.

What is the relation of the design
abstractions to the code? After recovering
the artifacts, we must preserve the relation-
ships among them. That is, once we deter-
mine that a context switch is being per-
formed within somedataflow diagram, we
would like to know exactly which chunk of
code performs it. Code analysis of a con-
crete example is often required to answer
questions that depend on low-level details
abstracted out of the dataflow diagram.
Once an engineer establishes this
abstraction-to-code link, he or she will
have an organized, “in-head” framework
(the abstraction) in which to put the code-
oriented details and, perhaps more impor-
tantly, a set of organized structures to help
interpret those details. Thus, the engineer
can understand the code in terms of the
abstractions in the framework.

Step two: supporting population of
reuse and recovery libraries. How might
we productively use the recovered design
components? Populating the component
library of a reuse system is an obvious and
valuable use, but that requires further steps
to generalize the components to enhance
their reusability. Figure 2 illustrates this
process. Generalization makes the compo-
nents applicable to a wider spectrum of
applications, but it can require that we
factor them to decouple independent de-
sign aspects. For example, an independent
process-management component might
apply far more widely than one that is
tightly coupled to window management.

The final step in this process integrates
the new abstractions into the reuse library
and the recovery knowledge base (the
domain model). Thus, we expect to reuse
this recovered information to help build
similar new components and to recover
similar components from other systems.

Step three: applying the results of
design recovery. The final step of the
process cycle applies the newly populated
domain model to design recovery (see
Figure 3). The abstract design components
stored in the domain model now become
the starting point for discovering candidate
concrete realizations of themselves in a

July 1989

Domain model

Figure 3. Model-aided design recovery process.

new system’s code. Once the software
engineer determines that the candidate is
truly a concrete realization of the abstract
design component, the design recovery
system records the finding. For example,
domain model information about the ex-
pected kinds of functions in the process
management example might provide a
skeleton for that module and even provide
some semantic clues about the names of
the various routines in the module.

Of course, the expectations in the do-
main model will seldom be an exact match
of the design structures in the source code,
and the software engineer will likely have
to edit the design abstraction to synchro-
nize it with the code, but even a partial
match reduces the overall work. Further,
each significant mismatch provides new
expectations that help the domain model
grow and evolve.

Distinguishing
properties of design
recovery

Two key properties distinguish this de-
sign recovery model from similar models:

(1) Use of informal information. The
model exploits multiple kinds of informa-
tion. Importantly, it uses informal infor-
mation, which exists outside of the sphere
of programming languages and opens a
new kind of leverage on the recovery prob-
lem - one that exploits a human-oriented,
associative style of retrieval and analysis.

(2) Use of a domain model. This design
recovery model also exploits multiple
sources of information. In particular, it
uses a domain model to help the software
engineer understand and interpret foreign
systems. The domain model is a knowl-
edge base of expectations expressed as
patterns of program structures, problem
domain structures, language structures,
naming conventions, and so forth, which
provide frameworks for the interpretation
of the code. These frameworks can be built
on to recreate the design information that is
missing from the code as written. Hereto-
fore, such expertise has existed only in the
minds of expert software engineers or
application domain specialists.

Conceptual abstractions: the use of
informal information. Among the infor-
mation developed by the design recovery
process are instances of conceptual
abstractions that help the user understand
the nature of a design in human terms. That
is, the conceptual abstraction instances
produced by design recovery must go
beyond what can be represented in pro-
gramming languages. They represent the
world not only in rigid formal terms, but
also in informal and flexible terms. Such
artifacts are not simply optional, informal
additions to the formalisms expressed in
the programming language, but comple-
mentary representations that are necessary
and critical to the mental structuring and
assimilation of the final design by a soft-
ware engineer.

Note that I distinguish between the no-

39

tion of a conceptual abstraction (“a process
management module”) and a specific in-
stance of a conceptual abstraction (“the
specific process management module in
the Unix system”). This distinction i s
important because each has a distinct role.
Conceptual abstractions are implemented
in the domain model as object-oriented
classes that take an active role in identify-
ing instances of themselves in the code
being interpreted. Thus, they represent the
set of realizations of that object type in the
target code, whereas an instance repre-
sents a single, specific realization of that
object in the code. The sidebar, “Concepts
of object-oriented programming,” further
clarifies the distinction between class and
instance.

If a recovered design contains this addi-

tional kind of entity - the conceptual
abstraction instance- how do we identify
it? And, what is the character of such an
entity?

An instance of a conceptual abstraction
has two important properties, one that i s
structural and one that i s semantic or asso-
ciative. The associative part of the
abstraction i s represented in the domain
model by a “linguistic idiom.” The struc-
tural part i s represented by various kinds of
idioms, depending on the kind of informa-
tion being represented. Introducing asso-
ciative connections and structural patterns
provides a partial formalization for infor-
mal conceptual abstractions.

Structural pattern. A conceptual ab-
straction’s first property i s its ability to

represent (that i s , both hide and relate)
some set of lower-level details. For ex-
ample, a single concept such as “a process
management module”can be used in many
contexts to represent a l l of the massive
detail that i s a process management mod-
ule, keeping the designer from becoming
overwhelmed by the detail. This property
i s similar to the conventional software-
engineering notion of expressing designs
as top-down refinement structures. Its
function i s to describe the successively
burgeoning levels of detail in a design. A
conceptual abstraction’s structure has an
additional, operational role as a pattern
that defines the kinds of source code struc-
tures that would express the abstraction.
This pattern i s used to search for and iden-
tify specific source code structures that are

Concepts of object-oriented
programming

The domain model in the Desire design recovery system
i s strongly related to the concepts of object-oriented pro-
gramming systems (OOPS), such as Smalltalk,’ C++,2 and
the Common Lisp Object System (CLOS). Central to OOPS
is the concept of a class, which is a package of local data
items that defines the state of an instance of the class, and
ti set of functions that manage that state. An instance of a
class (also cqlled an object) is a unique ~ o p y of the local
data items; to put it another way, it is a specific concrete
rnember of the class. Each data item is called an instance
variable. The functions of ,the class are conventionally
called methods.

An example of a class would be line-segment, which
might have instance variables x, y, and length that define
the position of the line segment’s end point and its length.
There might be many specific lines in a drawing, and each
would be represented by an instance of the class, that is, a
data record containing three values for x, y, and length.
The methods of such a class might be named create, de-
stroy, move, rotate, stretch, draw, and so forth. These
methods would operate on the instance variables to per-
form various operations on the line.

To call such a method, we would send a message to an
instance of the class. Sending a message is a generaliza-
tion of the notion of a function call, and it requires at least
two pieces of information to perform the invocation: a
pointer to an instance (from which the system can deter-
mine which class to look in for the method definition) and
the name of a method (such as move). The method name
is called the selector. These two pieces of information
uniquely determine the specific method to be called. Some
object systems. such as CLOS, provide an optional, special
case where additional items can be required, allowing a
liner-grained determination of the specific method to be
called.

A key concept in OOPS is inheritance, which allows us
to specify a new class by defining only the differences be-
tween it and another class, called its superclass. For ex-
ample, we could specify a class fat-line-segment by de-
claring it as a subclass of line-segment and describing the
differences. We would say line-segment is the superclass
of fat-line-segment. Suppose this new class has an addi-
tional instance variable named width, which defines the
width of the line to be drawn. Its instance records will eon-
tain variables x, y, and length, inherited from line-segment,
and the variable width, from fat-line-segment‘s definition.
Similarly, we would write a new version of the draw and
create methods to accommodate the operational differ-
ences between simple line segments and those with width.
These new methods would be called whenever the draw or
create messages were sent to one of fat-line-segment’s
instances. When other messages, such as stretch, are
sent, the inherited methods from line-segment would be
called.

frames, a slight variation of the concept of classes,
come from the field of artificial intelligence. They usually
have more built-in conventions for the instance variables
(commonly called slots in frame systems) than simple
OOPS classes do. They therefore have more associated
runtime support. Frames systems often include conven-
tions and runtime support for expressing relationships be-
tween instance records. For example, semantic net appli-
cations often provide frame conventions and built-in facili-
ties that search the frame network for sets of instances
that resemble but do not exactly match each other. Such
frame conventions and support are often built on top of a
conventional OOPS system.

References

I . Adele Goldberg and David Robson. Smalltalk-80: The Lan-
guage and Its Implementation, Addison-Wesley, 1983.

2. Bjarne Stroustrup, “What is Object-Oriented Programming?”
/€€E Software, May 1988. pp.10-20.

40 COMPUTER

plausible instances of the conceptual ab-
straction.

Associative connections. A conceptual
abstraction’s second property is its rich set
of informal, natural-language associations
that establish its contextual framework for
human understanding. That is, the concept
of a process management module has
semantic connections to other informal,
semantic concepts such as context switch-
ing, state saving, andmultitasking. Each of
these concepts allows association of the
concept of a process management module
with a large body of knowledge that can
help an engineer interpret the design of
some specific process management mod-
ule or plan the design of a new one.

These two properties provide clues to
the role of conceptual abstractions in deal-
ing with large complex designs. The struc-
tural property provides a way to handle lots
of detail without being overwhelmed, as
well as a way of describing the application
patterns one expects to find in programs. In
contrast, the associative linguistic prop-
erty offers a way to deal with partially
specified (fuzzy) design objects within the
universe of informal, natural language-
based semantics. These properties relate to
two parallel and complementary models
- the software-engineering representa-
tion model and the natural-language se-
mantic model.

The importance of informal informa-
tion. An example will illustrate the impor-
tance of the informal aspect of conceptual
abstractions. Consider the C function in
Figure4. This is areal function taken from
a multitasking window system’ with the
comments removed and meaningful iden-
tifiers mapped to semantically empty
symbols. What could an analyst tell about
the computational intent of this function?
Precious little. About all he or she could do
is paraphrase the relations expressed in the
programming language. For example, the
analyst could describe that the function
fOOOl calls f0002 with arguments that are
global arrays (such as gOOO1) of structures
containing some fields (such as so001 and
~0002) . Even if the definitions of all of the
functions (f0002, f0003, etc.) were avail-
able and similarly transformed, the com-
putational intent would remain unclear.
What is worse is that, without the informal
information, the computational intent of
these functions might not be unique. There
could be a number of valid interpretations.

The example severs the connection be-
tween the artifact and the semantics of the

July 1989

#include <stdio.h>
#include “h0001 .h”
#include “h0002.h”
#include “h0003.h”
f000 1 (a000 1)

unsigned int a000 1 ;
I
unsigned int io00 1 ;
f0002(g0005,d000 1 ,d0002);
f0002(a000 1 ,d0003,d0002);
f0003(g0001 [a0001] .so001 ,go001 [a000 l].sOOO2);
go006 = a000 1 ;
io001 = g0001[a0001].s0003;
if(!f0004(i0001) && (gOOO2->gOOO3)[iOOOl].sOOO4 == d0004)

1
fOO05(iOOO 1);

Figure 4. Function with no informal semantic clues.

#include <stdio.h>
#include “pr0c.h”
#include “window.h”
#include “g1obdefs.h”
change-window(nw)

unsigned int nw;
I
unsigned int pn;
border-attribute(cwin,NORM_ATTR,INV_ATTR,INV-ATTR);
border-attribute(nw,NORMHLIT-ATTR,INV-ATTR);
move-cursor(wintbl[nw].crow,wintbl[nw].ccol);
cwin = nw;
pn = wintbl[nw].pnumb;
if(!outrange(pn) && (g->proctbl)[pn].procstate == SUSPENDED)

t
resume(pn);

Figure 5. Function with some informal semantic clues.

problem domain, eliminating associations
between the program and our informal
knowledge of the world. Interpretation and
understanding of the program has become
impossible in any deep sense. Thus, we can
see that connotation plays an important
role in the process by which people deal
with, interpret, and understand programs.

It is exactly this kind of semantically
impoverished representation that we usu-
ally give to automated tools. If people have
difficulty dealing with this kind of repre-

sentation, why should we expect a com-
puter to be more successful?

So what sort of informal information is
required to understand the program in a
nonsuperficial way? Let us consider a
slightly enhanced version of this program.
Figure 5 maps the symbolic names back to
those used in the original code. Here, the
names of the functions are more meaning-
ful and, if the reader understands a bit
about multitasking and window systems,
he or she can probably make some good

41

#include <stdio.h>
#include “pr0c.h”
#include “window. h”
#include “g1obdefs.h”
change-window(nw) /*Change current window to window nw*/

/*Number of target window*/ unsigned int nw;
1
unsigned int pn;

/*Restore border of current window to un-highlighted*/
border-attribute(cwin,NORM-ATTRJNV-ATTR);

/*Highlight border of new current window*/
border-attri bute(nw,NORMHLIT-ATTRJNV-ATTR);

/*Move the physical cursor to the new window where the cursor was
left, and make nw the current window*/
move~cursor(wintb~[nw].crow,wintbl[nw].ccol);
cwin = nw:

/*Resume the process associated with the new window if it is
suspended.*/
pn = wintbl[nw].pnumb;
if(!outrange(pn) && (g->proctbl)[pn] .procstate == SUSPENDED)

I
resume(pn);

Figure 6. Function with many informal semantic clues.

guesses about the operation. The name of
the function suggests that it changes which
window is currently active, with the new
window probably indicated by the argu-
ment nw. Further, we can guess that the
function border-attribute alters the visual
appearance of the windows’ borders, the
function move-cursor moves the screen
cursor to some position in the new win-
dow, and the function resume allows some
suspended process to run again (probably
the process associated with the new win-
dow). The variables similarly come alive
with meaning: wintbl is probably the win-
dow table and probably has fields ccol and
crow that keep track of the cursor (inferred
from their use in the call to move-cursor).

By restoring the comments from the
original code (see Figure 6), we can cor-
roborate several of our guesses and en-
hance our understanding of some of the
functions and variables.

This exercise should make it clear that
the informal linguistic information that the
software engineer deals with is not simply
supplemental information that can be ig-
nored because automated tools do not use
it. Rather, this information is fundamental.

42

It provides the ability to determine the
computational intent of code in a way that
is impossible with just the source code
denuded of its informal semantics.

If we are to use this informal informa-
tion in design recovery tools, we must
propose a form for it, suggest how that
form relates to the formal information
captured in program source code or in
formal specifications, and propose a set of
operations on these structures that imple-
ments the design recovery process. To
accomplish these goals, we must first ana-
lyze the proposed design recovery system
in a bit more detail.

A model-based design
recovery system

What would a design recovery system
look like? Figure 7 is a system-level de-
scription of a model-based design recov-
ery system (called Desire) showing some
of the sources of information used to re-
cover designs. They include the code of
existing systems because such code COII-

tains a large amount of important informa-
tion, but there must be other sources as
well. Much design information cannot be
formally captured in the program source
code because programming languages do
not contain the constructs necessary to
express information such as the informal
conceptual abstractions behind the code.
For example, the informal conceptual ab-
stractions behind the change-window
function discussed earlier include win-
dows, processes, cursors, and the opera-
tions on these entities. And these concep-
tual abstractions are woven into a rich set
of knowledge about the domain that pro-
vides clues to understanding the formal
source code structures.

Design recovery results in a hypertext
web4 of information that weaves together
informal ideas (e.g., the concept of a proc-
ess), software engineering artifacts (e.g.. a
dataflow diagram of aprocess switch), and
details of specific examples of these enti-
ties as embodied in code (e.g., one specific
subroutine for process switching). This
web is projected into externalized reports
to help the software engineer understand a
specific target system and into internalized
data structures for use by the Rose reuse
~ y s t e m . ~ Since the web is built out of hy-
pertext frames, the design recovered by the
Desire system is simply a set of data struc-
tures that represent the conceptual
abstractions and express the semiformal
relationships among them (see sidebar,
“Concepts of object-oriented program-
ming”).

To understand how this model-based
design recovery system works, the nature
of the data items in the model, and how
those data items are used, consider the
following typical design recovery session
using the multitasking window system as
the application domain. Using the process
model of design recovery as a guide, I will
first define a set of data objects (called
idioms) that implement the structural pat-
terns and associative connections of con-
ceptual abstractions. The example idioms
codify the domain model’s expectations of
the entities and structures in a typical
multitasking window system running on a
personal computer. I will then informally
describe how these domain objects behave
during the semiautomated recovery of the
design of a specific multitasking window
system. This scenario is analogous to a
nonautomated design recovery performed
by an unaided software engineer.

An example. We start to discover the
structure of this multitasking window sys-

COMPUTER

Domain model

Human-oriented artifacts to
aid understanding

Software
engineer

Program
documentation

Figure 7. The Desire model-based design recovery system.

tem by looking for key structures, based on
our knowledge or expectations of the prob-
lem and application domains. A knowl-
edgeable engineer would expect to find a
process table, a window table, a window
management module, and a process man-
agement module, among other structures.
(I offer a detailed example of such a system
elsewhere.*)

In Desire’s domain model, such expec-
tations are represented by object classes
expressed in the Common Lisp Object
System (CLOS). In contrast to object
classes that implement a window manage-
ment module or a process management
module, these domain model classes
operate on the implementations of window
management modules or process manage-
ment modules. Specifically, domain model
objects search for instances of the key
structures within the code (perhaps with
human help) and bind their instance vari-
ables to these key structures, subject to the
analyst’s approval. An instance of such a
domain object represents an occurrence of
a concept such as a window management
module or a process management module
within a specific segment of source code.

July 1989

The instance variables of that instance
point to the segments of code that imple-
ment the domain object.

Thus, the first step of recovery is to
create a set of instances of the idiomatic
structures expected. The engineer exam-
ines the domain model, finds an object
class describing a multitasking window
manager, and creates an instance of that
object. As a side-effect, other instances
that define the detailed substructure of a
multitasking window manager are created
as a substructure of this first instance. This
structure of instance records represents an
architectural overview of a multitasking
window manager that might look
abstractly like the structure in Figure 8,
where the relation on the arcs is the sub-
parts relation. Over the course of the de-
sign recovery process, the whole set of
design details will evolve as a rich sub-
structure beneath this first set of instances.
Now let’s follow the evolution of that
substructure in more detail.

Each of the instances just created can
bind to the source code in one of two ways:

(1) It can bind directly to some segment

i’

Process
table

Window
table

management
module

Window
management
module

. . .

window
manager

Figure 8. Initial pattern instance rec-
ords expressing an architectural over-
view.

of code (associatively).
(2) It can bind indirectly through a

subinstance (that is, through a close
match of the substructures to the
program code).

43

Domain model

Figure 9. Abstract design idioms within a domain model.

For example, the process table class in
Figure 9 contains idioms for both kinds of
binding.

Direct binding is implemented via a
linguistic idiom, which represents the
expected linguistic form of a conceptual
abstraction such as process table. This id-
iom might be implemented as a set of

regular expression patterns that match the
various natural-language forms in source
code identifiers or comments. For ex-
ample, the pattern [pr.clprc] [.?I .. 1...1....]
[t.bltbl] defines the linguistic expectations
for process table. Of course, we will occa-
sionally encounter an expression of the
conceptual abstraction that the existing

process proctbl[MAXPROCS] ;
. . . .
. . . .

typedef struct procentry
{
unsigned int savesp;
unsigned int savess;
unsigned int pspseg;
unsigned int windno;
unsigned int procstate;
char procname[MAXPNAME+ 11;
int pnum;

) process;

/* Process tbl array */

/* Process table entry */

/* Saved sp register */
/* Saved ss register */
/* PSP seg addr this proc */
/* Window number this proc */
/* Process state *I
/* Process name */
/* Process number for this entry */

Figure 10. Structure found via search of source code.

44

patterns do not find. The addition of such
cases helps the domain model grow and
evolve.

How would the recovery system use
these patterns? We would seldom want to
recklessly search a large system to find all
of the associations. Not only would such a
search take a large amount of computation
time, it also would probably introduce a
large number of false positive hits, thereby
taking a lot of analyst time to sort out the
results. Instead, we would prefer to be
more selective and use our knowledge of
programs, systems, and domains to focus
the search. For example, in the C language
we would expect to find the definition of
the process table in some header file and so
would narrow our initial search to those
files. This search might find the chunk of
code in Figure 10.

Given this structure as a starting point,
the system uses the data object idiom that
defines the substructure of a process table
and recursively applies the search against
the code structure in Figure 10, using the
patterns from the classes of each of the
subparts of a process table. (Actually, I
have simplified this example by ignoring
the intervening conceptual structure- the
process table entry.) Figure 11 illustrates
this recursive step, which binds the fields
within the source code definition of the

COMPUTER

Process Process Process
number name state

I I I process proctbl[MAXPROCS]; /* Process tbl array */
1 8 8 ,

Location of Location
saved envir. of process

I I tyeeief ‘struct procentry I’ Process table entry *I

unsigned int savesp; I’ Saved sp register *I
unsigned int savess; I* Saved ss register *I
unsigned int pspseg; I’ PSP seg addr this proc *I
unsigned int windno; I* Window number this proc *I
unsigned int procstate; I* Process state *I

} process;

char procname[MAXPNAME+l]; I’ Process name */ - intpnum; /* Process number for this entry *I
1 I 1 1

1‘
Figure 11. Bindings to substructures in source code.

process table to the instance records that
define the expectations of those fields.

The recovered design in Figure 8 has
now evolved into that in Figure 12, where
the dashed lines show the bindings be-
tween abstractions and code. Note that the
matching of idiom pattern to code is inex-
act, with some instances of the idiom un-
bound and some elements of the struct
unexplained. We can typically expect an
automated aide to produce only partial
matches. leaving part of the interpreta-
tional work to the software engineer. Thus,
the analyst will likely have to specialize
(edit) the idiom further to reflect the spe-
cific case. However, the partial match
provides enormous benefit by focusing the
analysis and establishing a broad frame-
work in which to perform the remaining
interpretation. The partial match provides
a starting point by identifying some of the
substructures of the idiomatic form, mak-
ing completion of the interpretation far
simpler than starting from scratch.

So, for data structures in the source
code, at least two kinds of information
express the key idiomatic features of the
source code. The linguistic idiom ex-
presses the natural-language tokens (gen-
eralized into search patterns) that we ex-
pect to be associated with key data struc-
tures. The data object idioms express the

July 1989

substructure relationship within complex
data structures. We can exploit structural
idioms to discover design structures for
the first time (in a top-down manner) as
well as to verify associations with large-
scale structures discovered earlier (as a
bottom-up verification).

This pattern of linguistic and structural

design idioms repeats itself when we ex-
amine what kinds of structures the domain
model must contain to describe the expec-
tations about module structure, dataflow
plans, and so forth. For example, in the
context of a Unix-like multitasking sys-
tem, we would expect to find a process
management module with routines for

I

Mu It i tas kii
window
manager

Process
table

Window
table

Process
management
module

Window
management table

. . .
\

Process
state

Process
name

Process
number

Figure 12. Pattern of instance records with some bindings to code.

45

creating a process, resuming a process,
suspending a process, and so forth. Much
as in the data structure idiom, these expec-
tations form an initial framework that
might fuzzily match some functions in the
code. From here, the software engineer can
read and analyze the code and then special-
ize the domain model patterns to fit the
current case. Other artifacts such as dat-
aflow schemas operate in a similar fashion.

Using idioms to guide the search and
then act as the skeletal organizing structure
for the recovered design offers two impor-
tant benefits:

(1) The domain model idioms encode
expectations as preformed queries, elimi-
nating the need to constantly reenter these

query forms during program analysis.
(2) The system records the resulting

design in terms of both informal linguistic
abstractions and semiformal software
engineering structures.

Desire prototype and
current work

MCC has developed a prototype of a
design recovery system called Desire
Version 1.0. The system i s intended to
explore only that aspect of design recovery
that does not depend on the domain model.
Thus, i t is an interim system designed to
lay the foundation for the full Desire sys-

tem by providing a baseline of facilities to
process the information explicitly found in
source code.

Figure 13 shows Desire Version 1.0 in
operation. The system consists of three
major parts: a parser, a set of post-
processing functions, and the PlaneText
hypertext system4 as the presentation en-
gine. The parser processes a set of C files
for a given system and produces a set of
parse trees. We anticipate the need to use
much of the informal linguistic informa-
tion encoded in variable names, comments,
and the like, so the parser must take special
care to preserve this information.

A set of postprocessors takes the parse
trees as input and produces a dictionary
containing information on functions, the

Related work

Commercial reverse engineering tools

A number of reverse engineering tools (closely related to
reengineering tools) have appeared on the market recently.
These tools solve part of the problem of recovering the de-
sign of an existing system. Examples are Cscope, cxref,
BachmanlData Analyst, and Meta’s Design12.0. While
these tools find, present, and analyze information in the
source code (or in the data dictionary in the case of the
BachmanlData Analyst), they do not reconstruct, capture,
and express design abstractions that are not explicitly rep-
resented in the source code-related representations. Such
design abstractions are a large part of what humans use to
understand, modify, adapt, and otherwise deal with sys-
tems and programs. The need for and absence of such ca-
pabilities should indicate the direction in which these tools
will likely evolve, and should be a mandate to push the
technology in that direction.

We can loosely classify commercial reverse engineering
tools (in the broadest sense of the term “reverse engineer-
ing”) into the following categories:

test coverage analyzers;
debuggers and execution monitors;
source-to-source translators;
cross reference facilities;
code reformatters, pretty printers, and restructurers;
structure and metric analyzers;
file comparators; and
CASE-oriented reverse engineering (and reengineer-
ing) tools.

Since these tools are commercial, information about
them is limited. Nevertheless, Horton’ and Aranow2 provide
a short overview plus information on specific products and
vendors. In addition, Sneed and Jandrasics3 describe a
prototypical CASE-oriented reverse engineering system.

Related research

In contrast to commercial reverse engineering tools, the
tools in the research community come closer to our notion
of design recovery. Both sets of tools focus most often on
program understanding, but there is a subtle difference in
the research goals. Most tools in the area of program under-
standing have focused on very small-scale problems to
achieve precise and complete formal specifications of the
source code. Further, they typically have not focused as
much on informal information. In contrast, our approach
sacrifices formal completeness and precision for scale. In
the long run, these two approaches will likely be comple-
mentary rather than mutually exclusive, with each providing
aspects missing in the other.

Several researchers have been working on the problem of
understanding what a program is intended to do.4-7 Some
use information drawn largely from the programming lan-
guage domain, such as Wills’ recogni~er.~ Others incorpo-
rate more knowledge from the problem domain. In most
cases, the scale of the target programs is quite small -
tens or hundreds of lines of code. The most recent
Programmer’s Apprentice work deals with larger compo-
nents but does not yet deal with large, industrial sized com-
ponent~.~

Most of this work depends on analysis of the low-level,
formal details and, therefore, emphasizes a full and exact
match of the structure for recognition. The computational
load required by such an approach suggests that scaling up
to industrial sizes will be quite difficult. People appear to be
successful at program recognition because they can attend
to a few key features and make tentative, plausible matches
based on similarity rather than exactness. Further, most of
the time, many of those few key features are informal. Of
course, humans supplement such recognition with many
other approaches for verification and detailed understand-
ing, but the initial narrowing of attention based on informal,
partial clues seems to be critical to handling scale without
being overwhelmed by detail.

It seems likely that the understanding and recovery ap-
proaches can be productively merged. That is, an initial
search strategy based on informal, partial clues, followed by

46 COMPUTER

files that contain them, the global data
items defined, where they are defined, and
where they are used. lnformal information,
such as that in the comments, is associated
with the target program's function defini-
tions and data item definitions. In addition,
the postprocessors compute and store the
various relationships between these items
(such as calls, uses, and depends) in the
dictionary.

Once this information is computed,
another postprocessor computes a Plane-
Text web and invokes the PlaneText
browser to exhibit the web. PlaneText
computes various views that exhibit some
relationships (such as calls) and suppresses
others. Thus, if the user wants to see a call
lattice or the relationship between data

items and files, the system can compute
each of these as a separate browser view.

The screen dump in Figure 13 suggests
some of the prototype's functionality. The
prototype provides a set of predefined
Prolog queries for computing a variety of
questions about the data in the dictionary.
These queries include low-level questions
such as "What is the set of functions that
call function x?" as well as higher-level
questions such as "Does any function de-
fined in file A call any function defined in
file B?" or "Compute the set of functions
that appear to be utility functions."This set
of queries is evolving to include a number
of complex program analysis functions.
Since the user can build on these queries,
the question set can be tailored to any

specific application domain.
In Figure 13, the user has used one of the

predefined Prolog queries to ask for all
functions that refer to apiece of data named
call-to-times. The browser responds by
highlighting all of the functions found by
the query. The user inspects the visual
design browser and identifies the name of
the file (pow2.c) that contains the defini-
tion of one of these functions (power). The
user then opens a window cn that file
(lower left-hand corner) and uses Plane-
Text's regular expression-based search to
find the location of the variable
calls-to-times. Of course, as we determine
which sequences in the prototype are most
useful, we will replace them with a single
user command.

the more detailed kind of analysis used in the Programmer's
Apprentice, would provide a powerful and scaleable ap-
proach to automating more of the program comprehension
process. This appears to be the most successful long-term
direction for this kind of research.

Other work is more loosely related but nevertheless
shares some ideas with our work. Perhaps the overriding
theme of this work is the integration of CASE, hypertext (or
hypermedia), and knowledge-based technologies. In fact,
some of our own work that contributed to our current de-
sign-recovery notions (my large-scale reusea and Lubars'
Rose9 system) falls in this class, although the hypertext as-
pect is largely absent in Rose. The work of Ambras and
O'DaylO and Bigelowll shares this theme to a greater or
lesser extent, with Bigelow emphasizing hypertext and Am-
bras and ODay emphasizing knowledge-based representa-
tions. Most of the work in this category is, in principle, able
to handle large-scale information bases.

resembles the research re-
ported in the current article. These researchers have solved
the problem of scaling up but are not creating the kind of
high-level, informal conceptual abstractions that Desire fo-
cuses on. Of course, creating such abstractions was not
particularly important to Arango et al. because they wanted
to port their target program (Draco,13 in this case) com-
pletely automatically from one computing environment to
another. From this point of view, their system is more simi-
lar to source-to-source translation and restructuring systems
than reverse engineering systems of the variety I have dis-
cussed.

Abstractly, Arango et al. are also trying to recover de-
signs, but some differences exist between their focus and
ours. Their design recovery model focuses more on the
structure of the transformations and the operations on trans-
formations than it does on the structure of and operations
on the design entities themselves. Our focus is the reverse
of this. Further, and perhaps more importantly, their model
makes no use of informal information because it is based on
a commitment to complete automation. On the other hand,
because our model strongly Involves people in the design
recovery process, we must make heavy use of informal in-
formation to help human understanding.

The work by Arango et

References

1 . L. Horton. "Tools are an Alternative to 'Playing Computer','' Soft-
ware Magazine, Jan. 1988, pp 58-67.

2. E. Aranow, "CASE for Existing Systems: Taking Yesterday's
Systems into Tomorrow," System Builder, Oct./Nov. 1988, pp

3. H.M. Sneed and G. Jandrasics, "Inverse Transformation of Soft-
ware from Code to Specification," Proc. Conf. Software Mainte-
nance, CS Press, Los Alamitos, Calif., OrUer No. 879. 1988, pp.
102-1 09.

4. S. Letovsky, "Cognitive Processes in Program Comprehension,"
Systems and Software, No. 7, 1987, pp. 325-339.

5 . C. Rich and R. Waters, "The Programmer's Apprentice: A Re-
search Overview," Computer, Vol. 21, No. 11, Nov. 1988. pp. 10-
25.

6. E. Soloway and W.L. Johnson, "Proust: Knowledge-Based Pro-
gram Understanding," /€€€ Trans. Software Engineering. Vol.
SE-1 1, No. 3, Mar. 1985, pp. 267-275.

7. L.M. Wills, "Automated Program Recognition," Tech. Report 904,
MIT AI Laboratory, Feb. 1987.

8. T.J. Biggerstaff, "Hypermedia as a Tool to Aid Large-scale
Reuse," Tech. Report, STP-202-87. MCC, 1987, also in Work-
shop on Software Reuse, Rocky Mountain Institute of Software
Engineering, Boulder, Col., Oct. 1987.

9. M.D. Lubars, "Wide-Spectrum Support for Software Reusability,"
Tech. Report, STP-276-87, MCC, 1987, also in Workshop on
Software Reuse, Rocky Mountain Institute of Software Engineer-
ing, Boulder, Col., Oct. 1987.

10. J. Ambras and V. O'Day, "MicroScope: A Knowledge-Based Pro-
gramming Environment," /€€€ Software, Vol. 5, No. 3, May,

1 1. J. Bigelow, "Hypertext and CASE." /€E€ Software, Vol. 21, No.
3, Mar. 1988, pp. 23-27.

12. G. Arango et al., "Maintenance and Porting of Software by De-
sign Recovery," Proc. Conf. Software Maintenance, CS Press,
Los Alamitos, Calif., Order No. 648. 1985, pp. 42-49.

13. J.M. Neighbors, "Draco: A Method for Engineering Reusable
Software Systems," in Software Reusability, T.J. Biggerstaff and
A. Perlis, eds., Addison-Wesley, 1989.

20-29.

1988, pp. 50-58.

July 1989 41

Textual dictionary

test2 c-

calls-to square

Prolog interaction window

pouor(x, n) 1. RaiEs t o tho n-th ewer (n > 8) -I

or v i c e "erS.

rsfs one of(F.Vs) - fn-globale(F,V). mmber(V.Ve)

col lect - refs(Fs.Vs) - seto?(F.refs_one~of(F.Vs).Fe)

*L Funci ion F references ono of the global v a r i a b l e s in Gs

X Fe is a l l th- functions which reference a v s r l a b l o i n VE
Code window

Figure 13. First design recovery prototype: Desire Version 1.0.

Desire Version 1.0 also analyzes the
source code and creates a graphical dia-
gram describing its interpretation of the
program's module structure. Based on the
user's request, this analysis can variously
depend on the program's cohesion, its data
coupling, and so forth.

As a separate research task, we have
used PlaneText4 to sketch out a domain
model drawn from the area of multitasking
window systems.2 This research task uses
PlaneText as a simple design aid, and we
have not yet integrated the domain model
with the Desire Version 1.0 prototype. To
do so, we are converting this hypertext
design of the domain model into a set of
CLOS classes that are the active or im-
plementation form of the domain model.
This model bears a strong relationship to
the semantic models created with frame
languages like KL-One. The primary dif-
ference is that the CLOS classes possess

more specialized, local behavior. The
classes capture

the isa or superclass/subclass lattice of
the entities in the domain (e.g., a proc-
ess-table is a subclass of table);
the informal patterns for expressing
the entities in the domain (e.g., a proc-
ess might have a variety of abbrevia-
tions and synonyms);
the slots that are to contain the ex-
pected substructure of a concept in-
stance (e.g., aqueue will have aqueue-
entry slot);
restrictions on the slots that constrain
what values the slot can have (e.g., a
restriction on the class of the value in
the slot); and
methods that provide the entity's be-
havior (e.g., displaying the concept,
searching for possible instances, and
binding slots to instances).

A fair amount of work is now aimed
at determining what the interface
should look like and how it

should behave. Specifically, we are work-
ing on methods to visually relate the recov-
ered abstract concepts to the portions of the
program to which they refer.

More recently, we have begun a series
of experiments to refine our notions of
search strategies for informal information
and to allow fuzzy matches of expecta-
tions. We believe that, in addition to the
simple search mechanisms described ear-
lier, we will be able to apply ideas from
connectionist research5 to perform some
of the fuzzy matches. These searches take
advantage of the domain model's structure
to allow associative searches that return
items based on their indirect associations
with the features sought. This part of
the research is in an early prototyping
stage. 0

48 COMPUTER

Acknowledgments

I gratefully acknowledge the work of Keith Andren, Gerry Barksdale,
Glenn Bruns, Josiah Hoskins, Peter Marks, Bharat Mitbander, Don
Petersen, Dallas Webster, and Mahesh Zarule, who have cast portions of
these ideas into working prototypes.

References

1. J. Conklin and M. Begeman, “The Right Tool for the Job,”Byre, Vol.
13, NO. 10, Oct. 1988, pp. 255-266.

2. T.J. Biggerstaff, Systems Soffware Tools, Prentice Hall, 1986.

3. M.D. Lubars, “Wide-Spectrum Support for Software Reusability,”
Tech. Report, STP-276-87, MCC, 1987, also in Workshop on Soff-
w w c Reuse, Rocky Mountain Institute of Software Engineering,
Boulder, Col., Oct. 1987.

4. E. Gullichsen et al., “The PlaneTextBook,” Tech. Report STP-333-
86, MCC, 1986, republished as nonconfidential report STP-206-88,
MCC, 1988.

5 . J.A. Feldman et al., “Computing with Structured Connectionist
Networks,”Comm. ACM, Vol. 31, No. 2, Feb. 1988.

Ted J. Biggerstaff joined MCC in 1985 as director of design informa-
tion. He is directing research in design reusability and design recovery.
His research interests include software engineering, knowledge-based
approaches to reusability and specification, program generation tech-
niques, program development tools, and natural-language processing.

He is the author of Systems Software Tools (Prentice Hall, 1986) and
coeditor (with Alan Perlis) of a two-volume book titled Sofrware Reusa-
hiliry (Addison-Wesley/ACM, 1989) and the September 1984 special
issue of the IEEE Transactions on Software Engineering that focused on
reusability. He also organized one of the first large-scale workshops on
reusability (Newport, R.I., 1983).

Biggerstaff received a Boeing Fellowship in 1974. He received the BA
degree in physics from the University of Nebraska in 1964, and the MS
and PhD degrees in computer science from the University of Washing-
ton, Seattle, in 197 1 and 1976, respectively. He is a member of ACM, the
IEEE Computer Society, and AAAI.

Readers can contact Biggerstaff at Microelectronics and Technology
Corporation, 9390 Research Blvd., Kaleido Building 11, Austin, TX
78759.

July 1989

Software Professionals

User Interface Design
Advanced Media

Visual Programming
Object-Oriented Programming
An IBM multidisciplinary team which emphasizes
state-of-the-art interface design and the supporting
object-oriented programming technology has out-
standing opportunities for user interface architects
and object-oriented systems designers Our overall
objectives are to develop techniques for IBM’s OS12
that will simplify design of graphical user interfaces.
support the use of advanced media (voice. image.
music, video) and rapid prototyping as well as exploit
distributedlshared development environments.
Openings exist for:
User Interface Architects and Designers-To de-
sign and prototype the user interface for tools that
exploit advanced technologies such as hypertext,
multimedia and visual programming. Must be experi-
enced in Computer-Human Interaction, Cognitive
Psychology, Graphic Design of User Interfaces or
rapid prototyping methods.
Object-Oriented System Designers and Program-
mers-To define, design and prototype future IBM
products that manage user interfaces and support
the development of distributed applications. These
positions in applied research require programming
experience with object-oriented languages such as
C+ + or Smalltalk, and windowing systems such as
IBM’s OS12 Presentation Manager.
For all positions, you must be experienced in design-
ing or developing application programs or systems for
PCs or workstations. Also requires experience and
strong understanding of some or all of the following:

Visual programming/software support for

State-of-the-art application frameworks
User interface programming
Hypertext linking protocols and their

OOP research, including object storage in

OOP languages
Software engineering for OOP
Distributed applications and data research

You should also evidence an outstanding professional
or academic background. A Master’s degree in a
relevant discipline is preferred. Consideration, how-
ever, will be given to professional experience. Most
importantly, you should be willing to work in a small
team dedicated to setting the standard for OOP
systems and advanced user interface technology.
To further explore our excellent growth opportunities
and exceptional compensation package, please
forward resume in confidence to: IBM Cor oration,
Dept. IEEE89/7, P.O. Box 5339, Cary, N827511.

multimedia technology

implementation

databases

An equal opportunity employer

