
Experience in Teaching a Software Reengineering Course
Mohammad El-Ramly

Department of Computer Science, University of Leicester, UK.
mer14@le.ac.uk

ABSTRACT
Software engineering curricula emphasize developing new
software systems. Little attention is given to how to change and
modernize existing systems, i.e., the theory and practice of
software maintenance and reengineering. This paper presents the
author’s experience in teaching software reengineering in a
masters-level course at University of Leicester, UK. It presents
the course objectives, outline and the lessons learned. The main
lessons are: first, there is a big shortage of educational materials
for teaching software reengineering. Second, selecting the suitable
materials (that balance theory and practice) and the right tool(s)
for the level of students and depth of coverage required is a
difficult task. Third, teaching reengineering using toy exercises
and assignments does not convey the practical aspects of the
subject. While, teaching with real, even small size, exercises and
assignments, is almost infeasible. Getting the balance right
requires careful consideration and experimentation. Finally,
students understand and appreciate this topic much more if they
have previous industrial experience and when they are presented
with real industrial case studies.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering.

General Terms
Documentation, Human Factors.

Keywords
Software Reengineering, Software Engineering Education,
Reengineering Course, Software Reengineering Education.

1. INTRODUCTION
Software development is rarely a “green fields” activity. It is
likely the case that programmers, even if they are doing fresh
software development, have to live with a legacy from the past
that they have to understand, admire, take care of and evolve.
This requires knowledge and skills in the areas of program
comprehension, evolution, maintenance, reverse engineering and
reengineering. These areas have received a lot of attention from
the research community, resulting in an increasing number of
projects, conferences and workshops, e.g., WCRE, ICSM, CSMR,
IWPC (now ICPC), IWPSE, WOOR and others. Unfortunately,

software engineering (SE) curricula are significantly lagging
behind in providing the necessary training on these areas, and
particularly on the areas of reengineering and reverse engineering.
Most of the time, students are trained on developing new small
programs from scratch, but are not taught how to understand and
change existing and large ones [1]. SE textbooks cover software
change and evolution minimally, as a side topic. Compare, e.g.,
the 6th and 7th editions of Software Engineering by Sommerville.
Chapters 26, 27 and 28 in the 6th edition [10], which are titled
Legacy Systems, Software Change and Software Re-engineering,
respectively, are reduced in the 7th edition to only Chapter 21:
Software Evolution [11].

There is a need for more emphasis in SE undergraduate and
graduate programs on the issue of software evolution and change.
Students need to be educated on the theory and practice of
software comprehension, maintenance and reengineering. They
need to learn how to live with the monsters from the past and
tame them. There is an equal need for packages of educational
materials of different levels of depth for different curricula.

In this paper, I share my experience in teaching software
reengineering to students on a one-year M.Sc. program on SE at
University of Leicester, UK. First, I give the broader picture of
the aims of the software reengineering course. Then, I explain the
M.Sc. program context, within which reengineering is taught.
Then, I present the structure and content of the course and its
different variants. Finally, I present the lessons learned from this
experience. By sharing my experience, I hope to attract the
attention of SE educators to the importance of including software
reengineering in their curricula and to give some guidance and
help to those who are developing and delivering similar courses.

2. WHY TEAHCING REENIGNBEERING?
Software reengineering is “the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent
implementation of the new form” [12]. Reengineering is different
from software maintenance, which is “the modification of a
software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a
changed environment” [13]. But, the boundaries between
reengineering and maintenance are not well-defined. While
software maintenance is briefly covered in some SE curricula,
reengineering is almost ignored.

2.1 The Reengineering Spectrum
Reengineering covers a very wide spectrum of activities as in
Figure 1, including database reengineering [15], program
transformation [16], design refactoring [17], user interface
reengineering / Web-enabling [18] and supporting activities like
risk management [19], costing [20] and guidelines [21] for
reengineering projects. A reengineering activity usually consists

Copyright is held by the author/owner(s).
ICSE’06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.
.

699

Figure 1. The Spectrum of Software Reengineering Activities

of two phases: The first is a reverse engineering phase in which
the system is analyzed to identify its components and their
relations and to create representations of the system at at a higher
level of abstraction [12]. The second is a forward engineering
phase in which the system is reconstituted in a new form. So, a
reengineering course should address both phases in a balanced
way. Reverse engineering also covers a wide range of activities.

2.2 Course Goals
Reengineering skills are survival skills for those who have to
carry out software renovation and modernization projects. But, it
is difficult to cover the entire reengineering and reverse
engineering spectrum in a course. Hence, our course aims to give
students basic knowledge and training on how to deal with the
past and transform it to the future and give them a flavor of the
important reverse engineering and reengineering activities applied
on practical projects. Hopefully, they will expand what they
learned and learn further techniques on their own whenever the
need arises. Specifically, the goals of the course are:
• Understanding the problems and issues associated with

legacy systems and some of the methods used to reverse
engineer, comprehend, maintain, and reengineer them.

• Developing analytical and problem solving skills in
reengineering legacy systems.

• Developing hands-on experience in reverse engineering and
reengineering existing software systems.

The learning outcomes of the course were set as follows: By
the end of the course, students should be able to:

• Understand software aging phenomenon, the challenges in
renovating and maintaining legacy systems and the
available methods for dealing with them

• Make reasoned decisions on which reengineering methods
to apply for specific legacy system renovation tasks.

• Apply the methods learned to assess the situation of a small
legacy system and decide a suitable reengineering strategy for
it, in light of the objectives of the reengineering effort.

• Reverse engineer / reengineer moderate size legacy systems
using some of the available commercial / research tools.

3. THE M.Sc. PROGRAM CONTEXT
In 2003, the Dept. of Computer Science at University of Leicester
started its new one-year taught M.Sc. of SE for the e-Economy
program (renamed in 2005 as the M.Sc. of Advanced SE). The
program consists of two taught semesters and a three-months
summer project with a thesis dissertation. In each semester, the
students take a mixture of compulsory and optional courses. The
M.Sc. degree weighs 90 ECTS credits [14]. The program’s
emphasis is on important and promising future trends in SE that
are not so common in similar programs in the UK and worldwide.
The taught part consists of core and supplementary courses. In
2005/2006, the core courses are: Personal and Group Skills,
System Reengineering, Service-Oriented Architectures,
Generative Development, Software Process Engineering and
Advanced System Design. Students choose two optional courses
from a menu of SE and computer science courses.

4. COURSE DEAILS
This section describes the details of the course: its contents,
assessment and reading list. The official course name is CO7201:
System Reengineering. The course was offered twice so far.

4.1 Course Outline
The course covers some techniques for analyzing, comprehending
and measuring existing programs (reverse engineering) and some
techniques for regenerating and modernizing existing systems (the
forward engineering aspect of reengineering). The course outline
includes: 1) an introduction to legacy systems, software aging,
evolution, maintenance and reengineering, 2) program analysis
and slicing, 3) complexity and maintainability metrics, 5)
program transformation, 6) refactoring, 7) Web-enabling legacy
systems and 8) management Issues in software reengineering.

The course was taught for 10 weeks, 5 hours a week: 3 hours
lectures, 1 hour lab and 1 hour problem solving class. Sections 4.2
and 4.3 provides the specs of the two versions offered so far.

4.2 The First Version (2003/2004)
In 2003/2004, the course was taught for the first time. The course
weight is 150 hours in University of Leicester standards, divided
to 60 hours of lectures, labs and problem classes and 90 hours of
private study. Suitable tools were selected for the course, each for
a reengineering or reverse engineering task. These were:
• Imagix4D for program analysis and complexity metrics. [5]
• CodeSurfer for program slicing. [6]
• TXL for program transformation. [3]
• IntelliJ for program refactoring. [7]
The course was assessed by coursework (50%) and a final exam
(50%). The coursework consisted of 3 quizzes, 3 practical and 1
theoretical assignments and a project. Rough estimates of how
long the assignments and project will take were made. Theoretical
materials were presented in the lectures. Further discussions and
paper training of these materials were done in the problem
classes. Practical training on the relevant tool was done in the labs
and finally the assignments and the project allowed the students to
practice and expand what they learned and reinforce their
reengineering problem solving skills by solving mini case studies.
The practical assignments were on: 1) calculating various slices
and chops for a small system using CodeSurfer [6], 2) refactoring
a vending machine simulator program manually and using IntelliJ

Source Code

Code Structure
Views (AST, CFG,..)

Design

Architecture

New
Source Code

New Code
Structure Views

New Design

New
Architecture

Database
Reengineering New DatabaseDatabase

New User
Interface

User
Interfac

User Interface
Reengineering

Text
Transformation

Structure
Transformation
Restructuring

Design
Refactoring

Impact Analysis
Arch. Transformation

700

[7] and 3) writing a clone detector using TXL [3] for a simple
language that has assignment, declaration, 'if', 'case', 'while' and
'goto' statements and labels.

The project included picking an unfamiliar C/C++ system after
approval from the lecturer or choosing the system he proposed,
Indent [2]. Then performing the following tasks on it:
• Reverse engineering, comprehension and architecture recovery

of the subject system using the tools used in the course and
manual analysis if needed.

• Producing technical documentation for the system.
• Performing one reengineering task on the system, either Web-

enabling or transforming to another language or refactoring.
Overall, the course went well, with a few pitfalls. First, the
estimation of the time needed for the project was grossly wrong
due to: 1) my limited experience in teaching reengineering at the
time and 2) the uncertainty and uniqueness of reengineering
projects. Consequently, the project had to be scrapped halfway
through the course and its mark was redistributed.

Second, personal communications with the students and the end-
of-course questionnaire showed that the number of tools used was
too many. My initial assumption that every two weeks, new
material will be introduced and the relevant tool will be
introduced in the lab and then used for an assignment proved to
be too much. Instead of picking a very good tool for each
reengineering topic, it is better to use the same tool for as many
tasks as possible even if it is not the best. This relives the students
form the burden of learning a new tool every two weeks.

On the positive side, students’ evaluation showed that they liked
and benefited from the course and that the practical assignments
were very helpful in applying what they learned. They also said
that the class tests forced them to study regularly and keep up to
date. Most of the students did quite well on the course.

4.3 The Second Version (2004/2005)
In this version, the experience of 2003/2004 enhanced the course
and students’ learning. The outline remained the same with
significant changes to the details of some topics and to the
coursework. First, the number of tools used was reduced to two.
We used L-CARE reengineering environment [9] for program
transformation and analysis and slicing. Students had the choice
to use IntelliJ [7] or Eclipse [8] for refactoring. This proved to be
much more practical and less stressful to students. Second, we
integrated an industrial tutorial on “Software Reengineering for
Real” in the course, supported by Leg2Net project [4], which is a
transfer of knowledge project between University of Leicester,
UK, and ATX Software, Portugal. For demos, labs and
assignments, L-CARE was used [9]. The tutorial outline was:
1. Reengineering Overview and Market.
2. Reengineering Scenarios Found in Practice.

• Software Understanding Scenario.
• Software Transformation Scenario(s).
• Software Quality Assurance Scenario.

3. Introduction to L-CARE Environment.
4. XML Representation of Code.
5. Querying XML Code Representation with XPath.
6. Code Patterns Detection and Its Industrial Applications.
7. Code Transformation and Its Applications.

8. COBOL Quick Tutorial and COBOL Transformation in
Industry.

9. Slicing, Code Views and Metrics in L-CARE.
10. Survey of Existing Source Code Reengineering Tools.
The tutorial was 12 hours, divided between presentations / demos
and labs. It was successful and served a few purposes:
• It covered the practical training on several topics using one tool

(program analysis, program complexity and metrics and
program transformation).

• It gave the students a feeling of the reality of legacy systems
and software reengineering.

• It presented to the students real industrial case studies with a
small-scale case study to solve as an assignment. Research
shows that teaching with industrial case studies is very
beneficial to students [23].

The last change was redesigning the coursework to suit the time
available to students and to broaden the course spectrum by
getting the students to explore further topics on their own. The
assessment consisted of 2 class tests and 3 assignments. The first
assignment was a group research report and presentation on a
topic not covered in the class, e.g., de-compilation, architecture
recovery, database reverse engineering and reengineering, the role
of XML in reverse engineering and reengineering, etc. The second
assignment was a small case study on code pattern detection and
transformation using L-CARE. The third assignment was a
refactoring case study where students were asked to detect the bad
smells in a vending machine simulator program, refactor it and
write a report on their work. The students had the choice of using
IntelliJ [7] or Eclipse [8] for refactoring.

An evaluation survey showed that students’ satisfaction was
higher than the previous year and that they benefited from and
liked the industrial tutorial very much. However, they still
regarded the course load as too much.

4.4 Reading List
When I started preparing the course, I found no textbook on
software reengineering. So, I assembled a reading list from the
available resources. It included: 1) Introductory articles on legacy
systems, software aging, reengineering, etc., 2) Technical papers
on specific techniques, and 3) User manuals for the tools used

5. LESSONS LEARNED
Valuable lessons were learned from the author’s experience in
teaching this course and from students’ feedback. A survey was
conducted at the beginning of the course to collect information
about students’ backgrounds and another one was done at the end
of the course to evaluate it. The following gives my reflections and
lessons learned, but without detailed statistics due to space limit:

1. Few SE programs cover the subject of software change and
evolution. Fewer courses cover some aspects of software
reengineering. When I started preparing my course, my search
could not find any available courses on software reengineering
to use for guidance. The subject is underrepresented in SE
curricula. Students need education and training on how to deal
with and evolve legacy code-bases.

2. Very little educational materials are available for teaching
reengineering. While very significant achievements took place
in reengineering research and in developing industrial tools,

701

most research materials and tools are not meant for education
and require huge effort to adapt to an educational setting. There
is a great need for tried training and educational packages for
reengineering, similar to the LAN simulator refactoring lab
[22], for example.

3. Very little pedagogic research was done on teaching and
learning software change and evolution. The proceedings of the
Conference on SE Education and Training in the last five years
had only two papers on teaching reengineering-related topics.
Compare this with research on teaching software process or on
SE student projects. This shows that the subject is grossly
under-researched as well.

4. Considering the wide range of reengineering activities, one can
shape the course according to his/her and his/her students’
interests and still serve its main objectives. But no matter what
topics are included, it is important to cover practical tools and
some industrial case studies.

5. It is important to use as few tools as possible. As my
experience showed, it is overwhelming to students to use a new
tool for every new reengineering activity introduced. It is better
to use multi-purpose tools that can serve more than one topic.
When picking a tool, one should carefully consider its learning
curve. Heavyweight industrial tools have a slow learning curve
and can be infeasible to use in teaching.

6. A tutorial taught by an industry expert proved to be very
successful in teaching reengineering. It exposed the students to
real industrial case studies and trained them on an industrial
tool. Evaluation surveys showed that the vast majority of
students liked and benefited from this tutorial very much.

7. Teaching theoretical aspects of reengineering must be
accompanied by considerable practice via projects and
assignments. But one should carefully estimate their time and
effort. Mature metrics exist for estimating size and effort in
new software development. But, in reengineering, every
project is almost unique and one does not know what s/he is up
to until s/he starts tackling the target system.

8. Evaluation surveys and marks showed that students who joined
the M.Sc. program with past industrial experience, benefited
from and appreciated the course the most. They related the
material with their past experiences.

6. CONCLUDING REMARKS
This paper presented my experience in teaching software
reengineering for students of M.Sc. of Advanced SE at University
of Leicester. Overall, it was a successful experience and the goals
of the course were achieved. It was not possible to cover all
aspects of software reengineering in the course. So, only the key
techniques were covered via lectures, labs, readings, an industrial
tutorial and assignments. Most students reported that the course
was interesting and beneficial. They gained confidence in how to
tackle and renovate legacy systems and code-bases written by
others.

In the future, I will work on developing new lab materials, case
studies and project ideas and use the past data to better estimate
the time and effort needed for assignments and projects.

7. ACKNOWLEDGMENTS
The author acknowledges the financial support of Leg2NET
project [4] and the effort of ATX Software, especially Georgios

Koutsoukos, in preparing / delivering “Software Reengineering for
Real” tutorial. The author thanks Jim Cordy and Filippo Ricca for
the TXL teaching materials they provided and thanks Imagix
Corporation, GrammaTech, Inc. and JetBrains for their generous
contributions of educational and free licenses of their products.

8. REFERENCES
[1] A. van Deursen, J. Favre, R. Koschke and J. Rilling,

Experiences in Teaching Software Evolution and Program
Comprehension. Int. Wkshop on Prog. Comp., p. 283, 2003.

[2] Indent, An Open Source GNU Program for Beautifying C
Programs. http://www.xs4all.nl/~carlo17/indent/

[3] TXL Web Page. http://www.txl.ca
[4] From Legacy Systems to Services in the Net (Leg2Net). A

Marie-Curie ToK-IAP Project, Contract #3169.
http://www.cs.le.ac.uk/SoftSD/Leg2Net/

[5] Imagix4D,.http://www.imagix.com/products/imagix4d.html
[6] CodeSurfer..http://www.grammatech.com/products/codesurfer
[7] JetBrains, IntelliJ. http://www.jetbrains.com/idea/
[8] Eclipse Foundation, Eclipse. http://www.eclipse.org/
[9] ATX, Legacy Computer Aided Reengineering Environment,

L-CARE. http://www.atxsoftware.com/
[10] I. Sommerville, Software Engineering, 6th Edition, 2000.
[11] I. Sommerville, Software Engineering, 7th Edition, 2004.
[12] E. Chikofsky and J. Cross, Reverse Engineering and Design

Recovery - a Taxonomy. IEEE Software, Jan. 1990
[13] IEEE, ANSI/IEEE Standard 729-1983 and IEEE Standard

1219-1998. In IEEE Software Eng. Standards, IEEE, 1987
[14] ECTS - European Credit Transfer and Accumulation

System..http://europa.eu.int/comm/education/programmes/so
crates/ects/index_en.html

[15] A General Meta-model for Data-centered Application
Reengineering. A Dagstuhl Seminar on Interoperability of
Reengineering Tools (No. 01041), 2005.

[16] Transformation Techniques in Software Engineering. A
Dagstuhl Seminar (No. 05161), 2001.

[17] M. Fowler, Refactoring: Improving the Design of Existing
Code. Obj. Tech. Series, Addison-Wesley Longman, 1999.

[18] R. Kapoor, Device-Retargetable User Interface
Reengineering Using XML. TR TR01-11, Dept. of
Computing Science, Uni. of Alberta, 2001.

[19] J. Bergey, D. Smith, S. Tilley, N. Weiderman and S. Woods,
Why Reengineering Projects Fail. TR CMU/SEI-99-TR-010,
SE Institute, Carnegie Mellon Uni., 1999.

[20] H. Sneed, Estimating the Costs of a Reengineering Project.
Working Conf. on Reverse Engineering (WCRE), 2005.

[21] J. Bergey, D. Smith and N. Weiderman, DoD Legacy System
Migration Guidelines. TR CMU/SEI-99-TN-01, SE Institute,
Carnegie Mellon Uni., 1999.

[22] S. Demeyer et al., The LAN-simulation: A Refactoring
Teaching Example. Int. Workshop on Principles of Software
Evolution (IWPSE), 2005.

[23] J. Krone, D. Juedes and M. Sitharam, When Theory Meets
Practice: Enriching the CS Curriculum through Industrial
Case Studies. Conf. on SE Edu. & Training, 207-214, 2002.

702

