
Experiences in Teaching Software Evolution
and Program Comprehension

Arie van Deursen∗
CWI and Delft University of Technology

The Netherlands

Jean-Marie Favre†

University of Grenoble, France

Rainer Koschke‡

University of Stuttgart, Germany
Juergen Rilling§

Concordia University, Canada

Abstract

A large amount of research is devoted to software evolution
and program understanding, but these topics are often ne-
glected in software engineering curricula. The CCSE initia-
tive from IEEE/ACM proposes guidelines for the future. At
the ICSM’02 conference, a panel was held to establish what
should be taught in the future. This working session focuses
on what is being taught and what will be taught in the near
future. The goals include (1) to share experiences in teaching
software evolution and program understanding, (2) to estab-
lish the state of the practice and (3) to identify future direc-
tions.

1. Introduction

Understanding and evolving a large software product are
known as very challenging tasks. To address these issues a
large amount of research work has been lead over the last
decades giving rise to conferences such as IWPC, ICSM,
WCRE, CSMR and IWPSE and to the creation of numerous
research projects and networks.

Despite of this large body of research, the impact on soft-
ware industry practices has been however quite limited. Un-
derstanding large software is still a craft. While all practi-
tioners face this issue, they often consider this as a dark part
of software engineering: performing these tasks without any
kind of methods or tools still seem natural.

Although some tools are available, tool adoption is an im-
portant issue. For instance, commercial reverse engineering
tools produce various kinds of output, but software engineers
usually do not know how to interpret and use these pictures
and reports.

∗http://www.cwi.nl/∼arie/
†http://www-adele.imag.fr/∼jmfavre
‡http://www.informatik.uni-stuttgart.de/

ifi/ps/rainer/index.html
§http://www.cs.concordia.ca/∼faculty/rilling/

The importance of teaching software evolution and pro-
gram comprehension has been recognized in the last years.
International organizations such as IEEE/ACM are working
on the definition of guidelines for a software engineering un-
dergraduate curriculum [4]. The last ICSM hosted a panel
entitled “How Should Software Evolution and Maintenance a
Taught?” [1]. The objective of the present working session
is to focus on the current state of the practice by answering
the following questions ”what is being taught currently?” and
”what will be taught in a near future ?”. In other words, the
session will focus on sharing actual experiences in teaching
software evolution and program comprehension. To goal is
to establish a repository of teaching resources, to identify the
lessons learned and future directions.

We invite participation by

• academics who have experience teaching such courses,

• academics who expect to teach such a course in the near
future,

• tool vendors and practitioners who teach professional
seminars on software evolution.

2. Teaching Program Comprehension
and Software Evolution

Most of the time, students are trained in developing very small
programs starting from scratch. This approach is really mis-
leading since most students learn to believe that software en-
gineering is just about developing brand new software. In fact
many students will be involved in evolution-related activities
after completion of their studies.

Students learn how to write new programs but they are not
taught how to read and change existing and large ones.

The scale of the program is obviously an important factor
to consider. When focusing on small programs, the traditional
exercise / solution cycles work well. Increasing the size of the

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

software to be developed could be done by focusing on team
development. To put emphasis on integration and reuse many
software engineering courses now include also include task
involving the understanding of large and complex APIs. As
a result, various university successfully teach how to develop
medium scale systems.

However, evolving and understanding large existing soft-
ware includes quite different activities such as recover-
ing/understanding the actual architecture of the system, un-
derstanding some part of its source code and documentation
(may be in some programming language that the student had
not studied before). Including a new feature in such software
then requires to perform impact analysis, regression testing,
etc. Teaching these issues is quite challenging.

The SEEK initiative identifies different topics in the “Soft-
ware Evolution” knowledge area [4]:

Evolution Processes basic concepts of evolution and mainte-
nance, relationships between evolving entities, theories,
cost models, planning.

Evolution Activities: Working with legacy systems, program
comprehension and reverse engineering, system and pro-
cess re-engineering, impact analysis, migration (techni-
cal and business), refactoring, program transformation,
and data reverse engineering.

The list could be refined. In the context of this session, we
are in particular interested in establishing how these topics are
covered by the various existing courses, and how this to turn
this wish list into practice. In particular we seek for

• examples of effective exercises, labs, and demonstra-
tions;

• examples of effective evaluation tools and grading tech-
niques.

Questions to be addressed include:

• What topics are currently covered?

• Which guinea pig systems are being used? What size
of software is appropriate? Is it convenient and possible
to reuse the same system over the years? What level of
understanding of these systems should the teacher have?

• Are classical small scale exercise usable?

• Which set of slides, papers and books are currently used?

• Which resource on the web (e.g., Reengineering Wiki
[2], REportal [3]) are used?

• Which tools (commercial tools / research prototypes /
web REportal) are used?

• What kind of evaluation work best? How should a pro-
gram understanding task be graded?

• What about the understanding of source code of un-
known programming languages?

Obviously the answers to these questions largely depend
on the level and the target of the curricula (research oriented
vs. industry oriented), but the focus on the session is more
to study existing courses and material rather than to define
appropriate curricula.

3. Format of the Working Session

The first part will discuss the state of the practice by sum-
marizing selected courses and topics, as well as relevant re-
sources available on the web. All participants can contribute
to this overview.

The second part of the panel will be highly interactive. The
goal is to collect information and share results about best and
worst experiences, and promising ways to teach program com-
prehension in the near future.

In order to encourage interaction, participants will be asked
to write short responses to specific statements or questions on
index cards. The answers will be collected, and categorized in
a group discussion.

4. Results

Information on relevant program comprehension courses and
relevant resources will be made available via the pages de-
voted to teaching1the Reengineering Wiki [2]. We anticipate
to make active notes on the outcomes of the session, leading
to a report on the current state of practice in teaching program
comprehension and software engineering.

References
[1] A. van Deursen, T. Lethbridge, and P. Stevens. How should soft-

ware maintenance and evolution be taught? In Proceedings of
the International Conference on Software Maintenance (ICSM
2002). IEEE Computer Society, 2002.

[2] A. van Deursen and E. Visser. The reengineering wiki. In Pro-
ceedings 6th European Conference on Software Maintenance
and Reengineering (CSMR)., pages 217–220. IEEE Computer
Society, 2002.

[3] S. Mancoridis, T. S. Souder, E. R. Gansner, and J. L. Korn. RE-
portal: A web-based portal site for reverse engineering. In Eighth
Working Conference on Reverse Engineering (WCRE’01), pages
221–229. IEEE Computer Society, 2001.

[4] A. E. K. Sobel, editor. Computing Curricula — Software En-
gineering Volume; Second Draft of the Software Engineering
Knowledge (SEEK). ACM/IEEE, December 2002.

1See http://www.program-transformation.org/twiki/
bin/view/Transform/TeachingSoftwareEvolution

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

