
IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000 383

Experiences with a Software Maintenance Project
Course

James H. Andrews, Member, IEEE,and Hanan L. Lutfiyya, Member, IEEE

Abstract—A report is made on an experience of teaching a
senior-year course on software maintenance, centered around
a maintenance project. For the course, students organized
themselves into groups and worked on adaptive and perfective
maintenance of selected real-world software products. The
projects involved such issues as code understanding, require-
ments engineering, and maintenance design, and dealt with both
open-source and proprietary software. The main triumphs and
pitfalls of the course are recounted, and recommendations are
made on project selection and general course conduct.

Index Terms—Software maintenance, software project courses.

I. INTRODUCTION

SOFTWARE maintenance refers to the modifications that
are made to software after its initial release [1], [2]. Given

the costs of new system development, many organizations are
reluctant to completely replace older software. Organizations
therefore tend to modify existing software in order to repair de-
sign faults, adapt to new hardware, or address evolving user re-
quirements. In concert with the need for software maintenance
comes the need to deal with legacy systems (systems that have
been in use for years). There is increasing demand from industry
for professionals who understand the key issues and problems
of modifying existing software.

The past decade has seen an increased focus on university-
based education in software engineering (SE). There are now
a number of courses in introductory SE, software architecture,
and human–computer interfaces. However, there are relatively
few courses in software maintenance.

In September 1998, the authors’ department offered for the
first time a senior-level SE course on software maintenance, as
part of a six-course SE specialization program. The course was
focused on software maintenance projects chosen by the instruc-
tors, students, and client organizations. This paper reports on
experiences the authors had in offering this course.

II. THE COMPUTERSCIENCE PROGRAM AT UNIVERSITY OF

WESTERNONTARIO (UWO)

This section situates the course being described within the
overall computer science program at the University of Western
Ontario (UWO).

Manuscript received August 16, 2000; revised September 5, 2000.
The authors are with the Department of Computer Science, University

of Western Ontario, London, ON, Canada N6A 5B7 (e-mail: andrews;
hanan@csd.uwo.ca).

Publisher Item Identifier S 0018-9359(00)10235-3.

The Computer Science Department at UWO offers a B.Sc.
in computer science with a software engineering specialization.
Both an honors and a general degree are offered. This program
requires the students to take the following SE courses:

1) A second-year introductory course in SE. The students
are introduced to the fundamentals of design, testing, re-
quirement understanding and project management. The
course requires that students develop (in teams of four to
six people) software that is formally tested by the course
instructors.

2) A third-year course in intermediate SE. The focus of this
course is on advanced design using object-oriented design
and analysis approaches. Again, the students are required
to develop (in teams of four to six) software that is for-
mally tested by the course instructors.

3) Three from the list of following courses: Human–Com-
puter Interaction, Testing and Specification, Project Man-
agement and Advanced Software Design and Architec-
ture.

4) The software maintenance course (that is examined in this
paper), formally called Software Maintenance and Con-
figuration Management.

Thus, the students complete two team projects before their
fourth year and have experience in having others formally test
their software. However, upon entering fourth year they have yet
to modify existing software except to find bugs in other project
members’ code. Since much of software development deals with
existing software, it was felt that it was important to give stu-
dents the necessary experience.

III. THE SOFTWARE MAINTENANCE COURSE

This section describes the structure of the course as planned.
The course was defined as lasting from the beginning of the

first term of the school year until the end of the second term.
(The two terms at UWO are September–December and Jan-
uary–April.) The course nominally consisted of two hours per
week of lectures. In fact, the course was planned and executed
such that lectures were given in the lecture hours only for the
first few weeks, and then the lecture hours were used for pre-
sentations and small group discussions.

From the earliest stages in curriculum planning, the intention
was to make this a course focused on projects executed by teams
of students. The choice of projects was motivated by consid-
ering the different classes of maintenance tasks that exist. Soft-
ware maintenance can be divided into three categories:correc-
tive, adaptive, andperfective[1]. Corrective maintenance deals
with the removal of residual errors present in the product when it

0018–9359/00$10.00 © 2000 IEEE

384 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

is delivered. Adaptive maintenance involves modifying the soft-
ware to changes in the environment, e.g., a new release of the
hardware or operating system. Perfective maintenance involves
changing the software to improve it according to new require-
ments.

In the development of the course, corrective maintenance was
not considered to merit a great deal of attention. First, correc-
tive maintenance is considered to be a relatively small propor-
tion of all maintenance done [2]. Second, the students have ex-
perience in corrective maintenance. In other courses, they have
been asked to find bugs in code that they had not written. In ad-
dition, many have experience in finding bugs in other people’s
code from their two previous projects. Hence, the focus was on
finding projects that provided students with experience in adap-
tive and perfective maintenance.

In the first month of the course, it was decided which projects
would be attempted, and which students would be working on
which projects (the projects and groups are described below).
During the course of the year, each project group was expected
to hand in the following items.

• An initial project plan in mid-October. By this point, it
was felt that each group should have an understanding of
the various technologies and tasks concerned with their
project; this assignment was intended to get them to plan,
at a high level, what they were going to do over the course
of the year.

• A progress report in early November. This was a one-page
report describing the work done to start the project; for
example, the tasks performed to get the software installed
and compiled, and the initial attempts at understanding the
code or architecture.

• A progress report in late November. This report was a 5–10
page paper summarizing the progress in understanding
the program, establishing version control/checkout proce-
dures, and giving a more detailed description of the main-
tenance objectives and the approach the group was going
to use in meeting them.

• A progress report in mid-January. There were three parts
to this progress report: 1) A description of the overall ar-
chitecture of the system; 2) A description of each main-
tenance objective in detail; and 3) A revised project plan
describing in detail how they were going to execute the
project during the remainder of the year.

• A final report in early April. This was a description of the
achievements of the group over the course of the year,
including whether and how each maintenance objective
was attained.

In addition, the following presentations were expected:

• In January, an overall description of the project, a descrip-
tion of the work so far, and the maintenance plan.

• Small inter–group seminars in February and March, where
each student described aspects of their project to the in-
structor and to students outside of their project group.

• A final presentation presented by each group. Each
member of the group was expected to contribute to the
final presentation.

IV. GROUPORGANIZATION AND PROJECTSELECTION

This section describes how the groups were formed, the
projects which the groups selected and the clients sponsoring
the projects, and some problems that arose with project cancel-
lations.

A. Initial Organization of Groups

At the start of the course, it was suggested to the students that
they organize themselves into groups of no more than six, with
each group choosing a project (for some of the projects, a group
size was suggested). The students were trusted to do this without
interference from the instructors. This was done because the
students had had at least two previous courses in which they had
worked in groups, because they generally knew each other well,
and because many of them already had experience in industry
which helped their organizational abilities.

To a certain extent, this trust was rewarded. However, by the
end of the group organization period, there were still seven stu-
dents who had not gotten into groups. Six of these students were
placed in a group on their own (group 5); the seventh was placed
in an existing group, a move which initially caused some fric-
tion with students who felt that a new group member was being
imposed on them.

Another problem was that some students (as they confided)
would have been more comfortable with a smaller group, but be-
cause their group had not reached the maximum size of six, they
felt obliged to take new members when asked by other students.
In this sense, paradoxically, it might have been easier for the
students if the instructors had had more control over the group
formation process.

B. Clients, Projects and Groups

Client A was a software development department within a
large company. Client A was interested in exploring the idea
of restructuring a system in order to move some of its services
from a central computer to regional computers. Student group
1 took on this task. Group 1 consisted of students who had just
spent a 16-month internship at Client A’s company, and so were
well-suited to the project.

Client A’s project was not classic maintenance as is gener-
ally understood. That is, it did not involve the understanding of
legacy code and the relatively minor modification of it; rather, it
involved writing a new version of the software system based on
parts of the legacy system. This involved both adaptive mainte-
nance (incorporating new hardware, operating systems and pro-
gramming platforms) and perfective maintenance (restructuring
the system for efficiency reasons).

Client B was a software development department within a ser-
vice organization. Client B proposed a number of projects, and
student groups 2 and 3 took up two of their proposals. These
projects were also not maintenance in the classical sense, but
also involved writing new software which interfaced with legacy
systems or databases. These projects therefore also involved
both adaptive and perfective maintenance.

Finally, several projects suggested by the GNU Project were
proposed to the students. GNU [3] is a worldwide, cooperative
software development project which aims to produce freeware

ANDREWS AND LUTFIYYA: EXPERIENCES WITH A SOFTWARE MAINTENANCE PROJECT COURSE 385

versions of all standard Unix utilities; many GNU programs are
used in Linux systems. Groups 4 and 5 took up two of the pro-
posed projects. These projects were classic maintenance, as they
involved the understanding and modification of codebases of
significant size. The emphasis was on adding features and im-
proving performance. These are examples of perfective mainte-
nance.

C. Project Cancellations

In general, the projects proceeded as expected after the initial
group integration. However, there was one major problem: the
cancellation of first one, and then another project assigned to
Group 3.

Group 3’s first project, as proposed by Client B, involved a
large software system that Client B intended to install. However,
after Group 3 had done approximately six weeks of project un-
derstanding work, Client B wrote in e-mail that they could not
install the software and therefore were “cancelling” the project.
This caused some alarm. However, in an emergency meeting
shortly after, the instructors, Client B, and Group 3 agreed on
an alternative project involving the setup of a standalone com-
puter.

Unfortunately, in mid-January, Client B announced that they
could not set up the standalone computer either. It was then
agreed in e-mail that Group 3 and Client B would have an am-
icable separation, and a search began for a small maintenance
project they could do instead in order to salvage the rest of the
course. Group 3 settled on a small project involving Mozilla,
Netscape’s open-source browser software. This became their
project for the remaining 10 weeks of the course.

To give Client B their due, they were an extremely busy or-
ganization in the midst of a major change in their software base,
and so often could not devote enough time to everything they
wanted to do. Group 2 also did a project for Client B; that project
experienced no cancellations or withdrawal of facilities.

V. THE EXECUTION OF THEPROJECTS

This section describes the main events which happened
during the course of the year, and the tools, techniques and
schedules used to execute the projects. The course lasted for
26 weeks of class time, not including the December/January
exam and holiday period; the events of the year will therefore
be referred to as happening in “week/26,” where is some
number between 1–26.

A. Project Planning

The groups were required to produce an initial project plan,
including information on the tasks to be done by the various
group members, in the first report (in week 6/26). They were
also required to report on progress in all other reports except the
last. To some extent, the project plan was constrained by the set
milestones (see Section III), but the groups were free to identify
tasks specific to their projects and allocate group resources to
them.

The groups generally separated the tasks into tasks to be done
by all the group members together, and tasks to be done by in-
dividuals. Typical tasks done by all the group included initial

code understanding, maintenance design, and the production of
the final report. Typical tasks done by individuals included in-
stallation, implementation of specific features, and production
of specific sections of the various reports.

Some of the students had experience with the project-plan-
ning software Microsoft Project, and so were delegated the task
of producing the project plan for their group in graphical format.
These plans were found to complement well the written descrip-
tion of the project plan for the groups that produced them, al-
though not all groups could be expected to produce them.

The project plans (including the Microsoft Project versions)
were updated in the January progress report (week 15/26) to
show the progress on the milestones so far. As expected, the stu-
dents had to make modifications to their original project plans.
The main reason was usually the result of a better understanding
of the software, which led them to revise their estimates on the
time needed for adding or evaluating new features.

B. Installation and Program Understanding

The initial tasks for all of the groups were to install any nec-
essary software, to understand either the existing code (for the
“classic maintenance” GNU projects) or the legacy systems (for
the other projects), and to understand and solidify the mainte-
nance requirements. The groups’ progress in this was reported
on briefly in the November reports (weeks 9/26 and 11/26), and
more extensively in the January report (week 15/26).

The groups attempting to understand existing code found
a code understanding tool called SourceNavigator [4] to be
helpful. SourceNavigator produces some dataflow analysis
and cross-referencing, and allowed the students to browse the
source code in a structured way. UWO CS had installed a free
beta version of the executable of this tool, which had been
obtained from Cygnus Software (now part of Red Hat, Inc.).
One of the groups also found it helpful to simply step through
the running executable using the GNU debugger tool,gdb
[3]. Naturally, the students also used the usual Unix utilities
like editors and the regular expression findergrep to aid their
understanding.

The groups were also expected to install a revision control
system to track revisions being made to the system. Most of the
groups reported having done this by the late November (week
11/26) progress report.

The students were taught about the free Unix revision control
systems SCCS, RCS, and CVS. None of the groups opted to
use CVS, despite its popularity in real-world projects; the most
common reason cited for this reluctance was that they did not
trust CVS’s system of allowing multiple users to check out code
and then weaving together checked-in code in a consistent way.
In the end this point did not seem to matter, because it is not
clear that any of the groups actually used the revision control
system for systematic configuration management.

C. First Project Presentation

By the time of the midyear project report (week 15/26, mid-
January), the groups had completed installation of software and
initial understanding of code and legacy systems, had expanded
on the maintenance requirements in more depth, and had drawn

386 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

up a more detailed plan for the maintenance tasks. They pre-
sented this work in class, with each group making an approxi-
mately 25-min presentation on their project.

In general, the work of all the groups was satisfactory at this
point, although the maintenance plans and designs were less
detailed than had been hoped. This was probably the result of
the well-known tendency to jump from high-level design to code
modification, and to skimp on the design phase that should come
in-between.

D. Small Group Meetings

Small group meetings were held in weeks 19–22/26. Each
meeting included the two instructors and three students from
three different groups. Each student was required to give a five-
minute summary of their project and a five-minute description
of their role in their project, followed for each student by ques-
tions from the instructors and a general discussion period among
all those present.

These small group meetings were useful for the following
reasons. First, the instructors were able to get a better under-
standing of each individual’s contribution. Second, some of the
students were able to get valuable advice about particular prob-
lems they were having, from the instructors and/or the other
students. For example, if a student was having problems with
evaluating the performance of a specific piece of code, another
student would suggest tools that they had found useful in their
own work. Third, in the case of one group, a major flaw was
detected in the design of features that were to be added to the
software. This enabled the group to revise their design. In the
case of a second group, the instructors detected that they had
not considered all possible scenarios in evaluating their design.
The group did a further evaluation (although there were rela-
tively few changes to the design).

E. Final Presentation and Report

In early April, each group was required to present their final
presentation and report. Each member was expected to con-
tribute in the final presentation. Here, they summarized again
the goals and plans for the project, and they reported on what
they had accomplished and how their accomplishments matched
up with the original goals and plans.

In general, the work of all groups was satisfactory, although
for two groups, the instructors felt that they should have been
able to accomplish more; their marks in the course naturally
reflected this.

VI. PROJECTRESULTS

This section describes the overall results of the various
projects.

Group 1 achieved most of its maintenance objectives and re-
turned a project which Client A found useful. Although the soft-
ware was not as complete and integrated as had been hoped, it
was also intended by Client A more as a prototype; they there-
fore expected to change the code they received anyway.

Group 2 also achieved most of its maintenance objectives,
again returning a project not quite complete and integrated, but

which Client B found very useful as the basis for further devel-
opment. For both Groups 1 and 2, although the projects were
only partly completed, the documentation that was required to
be submitted increased the value of the code to the development
organizations.

Group 3 achieved some of its maintenance objectives. Unfor-
tunately, after planning and partially implementing one of the
major features they planned to add, as suggested by the Mozilla
website, they realized it had already been added several months
before. The website had not been updated to reflect the change,
and because of the size of the codebase, Group 3 had not no-
ticed the code for the new feature. Nevertheless, Group 3 made
enough of a start on adding the duplicate feature and another
feature that their work was judged to be good considering the
time frame they had in which to do it.

Group 4 became fragmented early on, since it had several sub-
sidiary objectives and decided to break up to work on them. Un-
fortunately, it never really became integrated again. Two of the
group members achieved good success in their task, and sub-
mitted code which is in the process of being submitted back to
the GNU project.

The rest of the group members had more or less success in
achieving their goals, but never integrated the new version of
the software with that produced by the other two. Although all
groups were encouraged to use revision control systems to en-
sure they produced an integrated product, this was not moni-
tored closely and it seems clear that this was not always done.

Group 5 worked steadily throughout the year, with the
exception of one member who did virtually nothing and failed
the course. However, the initial design of the modifications
to meet their major maintenance objective turned out to be
flawed; this fact emerged only in the small-group meetings
of February–March. Unfortunately, they were never able to
adequately address the flaw, and ended up with code which did
not adequately achieve this objective. Nevertheless, their other
objectives were more or less achieved, and the incomplete
code, along with the documentation, was submitted to the GNU
Project, with the encouragement of the main GNU contact for
this maintenance project.

One problem with Group 5 was that the project had been se-
lected by majority vote. Two of the students on the losing end
of the vote reported that their major problem was a lack of in-
terest and motivation in the project. This may well have been
a consequence of the fact that the group had been formed from
members not yet in other groups.

VII. L ESSONSLEARNED

This section reports on some of the things learned while
giving the course. It is broken up into lessons learned about
the nature of maintenance tasks, a comparison of the com-
mercial-client and open-source maintenance projects used,
thoughts about what could have been done differently, and
things that were done well.

A. The Nature of Maintenance

One of the things the instructors had to accept early on was
that the maintenance projects suggested by industrial partners

ANDREWS AND LUTFIYYA: EXPERIENCES WITH A SOFTWARE MAINTENANCE PROJECT COURSE 387

were not classic code modification tasks, but rather concerned
the development of new code to fit into existing business pro-
cesses. This seems to be primarily a result of IT being con-
cerned in the short term with the shift to network computing
and client-server applications.

B. Commercial-Client Versus Open-Source Projects

Which kind of project was better, the ones where the students
interacted with a commercial client or the ones where the stu-
dents maintained open-source software? The two authors have
somewhat different opinions on this issue. This section simply
discusses the pros and cons of the two kinds of projects, and
what can be done to emphasize the good points and mitigate the
bad points.

In commercial-client projects, the students had contact with
a project of immediate commercial value to their clients. They
could also interact directly with these clients, who could in turn
give them valuable references for future employment oppor-
tunities. These projects tended to be more cutting-edge, since
they involved the conversion to newer technologies such as the
client-server architecture. Hence the students were more enthu-
siastic about these projects.

However, the commercial-client projects brought with them
considerable risk. There was always the potential that a project
be cancelled, or drift away from the goals of the course. Yet, for
instance, no leverage existed to demand anything from Client
B when the project was cancelled, since no guarantees could
be given that finished software would be delivered. It may have
been useful to draw up a semi-formal agreement among clients,
students and instructors on what the obligations were on all
sides. This would not have been legally binding, but would at
least have afforded some basis for a semi-formal complaint if
things had gone awry.

The open-source projects followed a more predictable course.
They were based on publically available code and widely used
platforms, and therefore could be carried out on student ma-
chines without depending on other organizations or equipment.
The requirements for the projects were relatively simple and
clearly defined, and the students were able, through their work,
to contribute to open-source projects such as GNU and Linux.

However, many students were unenthusiastic about the GNU
projects. This may have been simply the nature of the projects:
unexciting Unix utilities implemented in C Versus GUI-based,
object-oriented client-server applications implemented in Java.
The students may have shown more interest if the overall impact
of GNU, Linux, and open-source code on the software industry
had been explored more deeply with them. There was definite
interest in the Mozilla project, so choosing projects from such
open-source applications as Mozilla and Apache seems a good
choice; however, care must be taken here to select projects with a
long time frame, that can be completed before these fast-moving
codebases have changed so much that the students’ work is ir-
relevant.

C. Things That Could Have Been Done Differently

As discussed above, it would have been useful for the instruc-
tors to assume more control of the group formation process, in

order to take some of the organizational responsibilities off the
students’ shoulders. As an alternative to what was done, students
could submit information about the projects they are most inter-
ested in and information about whom they want to work with.
The instructors could then form the groups based on this infor-
mation.

Although some of the methods, techniques, and tools used
when maintaining evolving software were introduced, and the
students were encouraged to use them, there were mixed re-
sults. For example, the students were familiar with configura-
tion management systems, and they were highly encouraged to
use such systems in their projects. However, it is not clear that
any of them did so successfully. On the other hand, as men-
tioned above, two of the groups found S-Navigator [4] to be
very useful. Part of the problem may be that the free configura-
tion management tools that are available are somewhat behind
the commercial tools, while S-Navigator is not. In the future,
several examples will be walked through of how the free con-
figuration management tools can be useful to their projects, and
the use of one of the configuration management tools will be
made a required part of the project.

Thirdly, concepts related to software architecture and design
patterns should have been introduced earlier. The department
has a separate course on software architecture and design pat-
terns; hence, there was relatively little formal discussion on this.
However, the architecture course took place from January to
April. The groups indicated that knowing this material earlier
would have better helped them formalize their architectures.
Two of the groups made many last minute additions to their soft-
ware based on the design patterns they learned in the course.
They indicated that the design patterns gave them insight into
how to make sure that the addition of their features would be
maintainable in the future. In future years, this course may be
offered from September to December.

D. Things That Were Done Right

Finally, some words about what was successful in the course.
The students were asked to do real-world maintenance tasks

that potentially had an impact beyond the bounds of the course.
This was crucial for helping the students maintain interest in the
projects, and for giving the students who had not had commer-
cial development experience a feel for what software develop-
ment was like in the “real world.”

The students were required to submit extensive documen-
tation about what they had learned about the code they were
working with, how they approached the project, and what the
results were. Since many maintenance tasks are poorly docu-
mented in the real world, these documents turned out to be a
valuable contribution in their own right. In one of the GNU
projects, there was more interest expressed in the document than
in the code produced, since the document described the organi-
zation of the code.

Interaction among the students was encouraged by requiring
them to present the results of their projects to each other periodi-
cally, and by requiring them to attend the small-group meetings,
at which no other members from their group were present. This
allowed them to feel more cohesive as a class, and to exchange
ideas amongst themselves, rather than just with the instructors

388 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

and the members of their project group. The small-group meet-
ings also gave the chance to identify problems with personnel
or project management, which paid off in some instances.

Two of the projects highly encouraged students to think about
how their additions could be made maintainable. In one case,
the client requirements for the additional features changed on
an almost daily basis. The students found this frustrating, but it
forced them to think about designing their additions so it would
be easy to change the software in the future. Their realization of
how important design is to maintenance was exciting. Although
this was emphasized in other courses, this is something not truly
appreciated until experienced. More projects that emphasize this
aspect would be very desirable.

VIII. R ELATED WORK

In developing this course, a number of programs in Canada
and the United States were examined by going to their web
sites. No courses which took a similar approach for teaching
software maintenance were found. Most computer science pro-
grams offer no more than two software engineering courses.
The closest courses to software maintenance were courses at the
Universities of Alberta, Victoria, and Waterloo which contained
assignments focusing on determining the architecture of a large
piece of source code.

The course described here differs as follows. First, there is
more variability in the type of projects allowed. For example,
some of the projects allow students to look at making a sequen-
tial piece of software distributed. This does not necessarily re-
quire an in-depth source code analysis, but it is an important
problem which requires the students to learn how to integrate
pieces of existing legacy code. Second, the projects selected re-
quire the students to test their understanding of the legacy soft-
ware by requiring them to enhance the software.

IX. CONCLUSION

The following are suggested reasons why there are very few
courses in software maintenance.

Attitude: Software maintenance is often not
considered a discipline by many
academics.

Texts: There are very few texts that focus
on software maintenance.

Course Development: A course in software maintenance
requires projects. There is a per-
ception that finding projects appro-
priate for undergraduate students is
difficult.

However, the course described in this article gave students
valuable experience in the qualitatively different task of soft-
ware maintenance. Key to this was the selection of and focus on
real-world projects. As this was the first time the course was of-
fered, some difficulties had to be worked through. However, the
authors hope to learn from these difficulties, and have written
this paper in the hope that others can learn from them as well.

REFERENCES

[1] A. A. Takang and P. A. Grubb,Software Maintenance: Concepts and
Practice. London, U.K.: Int. Thomson Comput. Press, 1996.

[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli,Fundamentals of Software
Engineering. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[3] GNU Project, “Gnu project web pages,”, www.gnu.org, 2000.
[4] Red Hat Inc., “SourceNavigator web pages,”,

sources.redhat.com/sourcenav, or reachable by searching
www.redhat.com, 2000.

James H. Andrews(M’98) received the B.Sc. and M.Sc. degrees from the Uni-
versity of British Columbia, Vancouver, Canada, in 1982 and 1986, respectively,
and the Ph.D. degree from the University of Edinburgh, U.K., in 1991, all in
computer science.

He was with Bell-Northern Research, Ottawa, ON, Canada, from 1982 to
1984, with Simon Fraser University, Vancouver, BC, Canada, from 1991 to
1995, and with the University of British Columbia on the FormalWare project
from 1996 to 1997. He has been with the Computer Science Department, Uni-
versity of Western Ontario, London, ON, since 1997, where he is an Assistant
Professor. His research interests include software testing, semantics of program-
ming languages, and formal specification.

Hanan L. Lutfiyya (M’92) received the B.Sc. degree from Yarmouk University,
Jordan, the M.Sc. degree from the University of Iowa, Ames, and the Ph.D.
degree in 1992 from the University of Missouri, Rolla, all in computer science.

She has been with the Computer Science Department, the University of
Western Ontario, London, ON, Canada, since 1992, where she is an Associate
Professor. Her research interests include distributed systems management and
software engineering.

