
Gerardo Canfora is a full professor of computer science at the Faculty
of Engineering and the Director of the Research Centre on Software
Technology (RCOST) of the University of Sannio in Benevento, Italy.
He serves on the program committees of a number of international
conferences. He was a program co-chair of the 1997 International
Workshop on Program Comprehension; the 2001 International
Conference on Software Maintenance; the 2003 European
Conference on Software Maintenance and Reengineering; the 2005
International Workshop on Principles of Software Evolution: He was
the General chair of the 2003 European Conference on Software
Maintenance and Reengineering and 2006 Working Conference on
Reverse Engineering. Currently, he is a program co-chair of the 2007
International Conference on Software Maintenance. His research
interests include software maintenance and reverse engineering,
service oriented software engineering, and experimental software
engineering. He has co-authored more than 100 papers published in
international journals and referred conferences and workshops. He
was an associate editor of IEEE Transactions on Software
Engineering and he currently serves on the Editorial Board of the
Journal of Software Maintenance and Evolution. He is a member of
the IEEE Computer Society

 Massimiliano Di Penta is assistant professor at the University of
Sannio in Benevento, Italy and researcher leader at the Research
Centre On Software Technology (RCOST). He received his PhD in
Computer Engineering in 2003 and his laurea degree in Computer
Engineering in 1999. His main research interests include software
maintenance, reverse engineering, empirical software engineering,
and service-oriented software engineering. He is author of about 80
papers published on referred journals, conferences and workshops.
He is program co-chair of the 14th Working Conference on Reverse
Engineering (WCRE 2007) and of the 9th International Symposium on
Web Site Evolution (WSE 2007), and steering committee member of
STEP. He has been program co-chair of WCRE 2006, SCAM 2006
and STEP 2005. He serves and has served program and organizing
committees of conferences and workshops such as CSMR, GECCO,
ICSM, IWPC, SCAM, SEKE, WCRE, and WSE. He is member of the
IEEE, the IEEE Computer Society and of the ACM.

New Frontiers of Reverse Engineering
Gerardo Canfora and Massimiliano Di Penta

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

New Frontiers of Reverse Engineering

Gerardo Canfora and Massimiliano Di Penta
RCOST - University of Sannio, Benevento, Italy

canfora@unisannio.it dipenta@unisannio.it

Abstract

Comprehending and modifying software is at the heart
of many software engineering tasks, and this explains
the growing interest that software reverse engineering has
gained in the last 20 years. Broadly speaking, reverse en-
gineering is the process of analyzing a subject system to
create representations of the system at a higher level of ab-
straction. This paper briefly presents an overview of the
field of reverse engineering, reviews main achievements and
areas of application, and highlights key open research is-
sues for the future.

1 Introduction

Many software engineering activities entail dealing with
existing systems. Software maintenance, testing, quality as-
surance, reuse, and integration are only a few examples of
software processes that involve existing systems. A key as-
pect of all these processes is the identification of the com-
ponents of a system and the comprehension of the relation-
ships existing among them. The term reverse engineering
encompasses a broad array of methods and tools related to
understanding and modifying software systems.

In the context of software engineering, the term reverse
engineering was defined in 1990 by Chikofsky and Cross
in their seminal paper [28] as the process of analyzing a
subject system to (i) identify the system’s components and
their inter-relationships and (ii) create representations of
the system in another form or at a higher level of abstrac-
tion. Thus, the core of reverse engineering consists in de-
riving information from the available software artifacts and
translating it into abstract representations more easily un-
derstandable by humans. Of course, the benefits are maxi-
mal when supported by tools.

The IEEE-1219 [60] standard recommends reverse engi-
neering as a key supporting technology to deal with sys-
tems that have the source code as the only reliable rep-
resentation. Reverse engineering goals are multiple, e.g.,
coping with complexity, generating alternate views, recov-

ering lost information, detecting side effects, synthesizing
higher abstractions, and facilitating reuse. Examples of
problem areas where reverse engineering has been success-
fully applied include redocumenting programs [11] and re-
lational databases [94], identifying reusable assets [23], re-
covering architectures [67], recovering design patterns [2,
53, 68, 108], building traceability between code and docu-
mentation [1, 76], identifying clones [7, 10, 62, 81], code
smells [111] and aspects [79, 106], computing change im-
pacts [6], reverse engineering binary code [29], renewing
user interfaces [84, 89], translating a program from one lan-
guage to another [19], migrating [22] or wrapping legacy
code [99]. Although software reverse engineering origi-
nated in software maintenance, its definition is sufficiently
broad so as to be applicable to many problem areas, for ex-
ample to create representations necessary for testing pur-
poses [82], or to audit security and vulnerability [34].

This paper provides a survey (not intended to be exhaus-
tive) of existing work in the area of software reverse engi-
neering, discusses success stories and main achievements,
and provides a road map for possible future developments
in the light of emerging trends in software engineering.

The paper is organized as follows. Section 2 provides a
primer of reverse engineering terminology and success sto-
ries. Section 3 reports the main achievements of reverse
engineering during the last decade, organized in three main
areas: program analysis, design recovery, and visualization.
Section 4 uses the same three areas to identify and discuss
issues that are likely to be the challenges for reverse engi-
neering in the next few years. Section 5 identifies reverse
engineering challenges that derive from emerging comput-
ing paradigms, such as service-oriented computing and au-
tonomic computing. The issue of easing the adoption of
reverse engineering is discussed in Section 6. Finally, Sec-
tion 7 concludes the paper.

2 A Primer on Reverse Engineering

Reverse engineering has been traditionally viewed as a
two step process: information extraction and abstraction.
Information extraction analyses the subject system artifacts

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Software
work

product

Parser,
Semantic
analyzer

Information
base

View
composer(s)

New view(s)
of product

• Format
• Graphics
• Documentation
• Metrics
• Logic
• Reports

Figure 1. Reverse engineering tools architec-
ture [28]

to gather raw data, whereas abstraction creates user-oriented
documents and views. For example, information extrac-
tion activities consist of extracting Control Flow Graphs
(CFGs), metrics or facts from source code. Abstraction out-
puts can be design artifacts, traceability links, or business
objects. Accordingly, Chikofsky and Cross outlined a ba-
sic structure for reverse engineering tools (cf. Figure 1).
The software product to be “reversed” is analyzed, and the
results of this analysis are stored into an information base.
Such information is then used by view composers to pro-
duce alternate views of the software product, such as met-
rics, graphics, reports, etc.

Most reverse engineering tools aim at obtaining abstrac-
tions, or different forms of representations, from software
system implementations, although this is not a strict re-
quirement: as a matter of fact, reverse engineering can be
performed on any software artifact: requirement, design,
code, test case, manual pages, etc. Reverse engineering
approaches can have two broad objectives: redocumenta-
tion and design recovery. Redocumentation aims at produc-
ing/revising alternate views of a given artifact, at the same
level of abstraction, e.g., pretty printing source code or visu-
alizing CFGs. As defined by Biggerstaff [12], design recov-
ery aims at recreating design abstractions from the source
code, existing documentation, experts’ knowledge and any
other source of information.

Strictly speaking, reverse engineering does not include
restructuring, which is the transformation from one repre-
sentation form to another (e.g., source-to-source transfor-
mations) nor reengineering, which encompasses the alter-
ation of the subject system to reconstitute it in a new form
(e.g., migration). In particular, reengineering includes a re-
verse engineering phase in which an abstraction of the soft-
ware system to be reengineered is obtained, and a forward
engineering phase, aimed at restructuring the software sys-
tem itself. Overall, a reengineering process can be viewed
as a horseshoe model (cf. Figure 2) as the one used by
Kazman et al. to describe a three-step architecture reengi-

Architecture
Recovery/
Conformance

Architecture-
Based
Development

Architecture
Transformation

Base
Architecture

Desired
Architecture

Architectural
Rep’n

Architectural
Rep’n

Concepts Concepts
Design
patterns
& styles

Program
plans

Code
styles

Function-Level
Rep’n

Function-Level
Rep’n

Code-Structure
Rep’n

Code-Structure
Rep’n

Source Text
Rep’n

Legacy
Source

New System
Source

Figure 2. Architecture Reengineering: The
Horseshoe model [64]

neering process [64]. The first step — represented on the
left-side of the horseshoe — aims at extracting the architec-
ture from source code. The second part of the process —
represented in the upper part of the horseshoe — is related
to architecture transformation towards a target architecture.
The last part — on the right side of the horseshoe — rep-
resents the instantiation of the new architecture. By look-
ing at the horseshoe from the bottom to the top, it can be
noted how reengineering proceeds at different levels of ab-
straction: code representation, function representation, and
architecture representation.

2.1 Success Stories

During the last 20 years, a lot has been done in the field
of reverse engineering. The main results have been dissem-
inated in venues such as the Working Conference on Re-
verse Engineering (WCRE), the International Conference
on Software Maintenance (ICSM), the International Confer-
ence on Program Comprehension (ICPC, formerly IWPC),
the International Workshop on Source Code Analysis and
Manipulation (SCAM), in ICSM and ICSE workshops, and
in other major software engineering conferences and jour-
nals.

During the early nineties, reverse engineering research
focused on problems mainly related to the analysis of pro-
cedural software to understand it and to cope with upcom-
ing problems such as the Y2K problem. Many fact ex-
tractors (i.e., tools extracting intermediate representations
from the source code and storing it into databases) were cre-
ated. Examples include CIA [26] or the Software Refinery
toolkit [80], that used an object-oriented database, called
Refine, to store a fine grained program model in the form of
an attributed Abstract Syntax Tree (AST).

The diffusion of object-oriented languages and the ad-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

vantages they introduced, suggested to reengineer exist-
ing procedural software towards object-oriented. Bearing
this in mind, approaches were developed to identify objects
into legacy code (e.g., [30]). While these approaches were
very promising and were also complemented by techniques
aimed at transforming one language into another [19],
doubts have been raised about the comprehensibility and
maintainability of the target programs, that often only have
the syntax of the target language, without adhering to its
philosophy.

Architecture recovery has also been a mainstream re-
search during the nineties and the early part of the new
millennium. Architecture aims at identifying components
forming the architecture of software systems, and the re-
lationships (connectors) between them. As pointed out in
Koschke’s PhD thesis [67], architecture recovery is impor-
tant to improve understandability, to promote reuse, and to
support and manage software evolution. Component recov-
ery has been performed in the past using approaches such as
metrics-based [86] or Formal Concept Analysis (FCA) [98].

Further work focused on proposing clustering metrics
and heuristic-based techniques for component recovery. A
survey of clustering techniques applied to component iden-
tification applied to software systems have been published
in the past, for example by Tzerpos and Holt [110]. An
approach relying on inter-module and intra-module depen-
dency graphs to refactor software systems was proposed
by Mitchell and Mancoridis [86]. In general, when using
metrics-based approaches, component identification can be
treated as an optimization problem [55].

Architecture recovery is a semi-automatic approach and,
as such, can require manual intervention, like for Rigi [116].
One of the main problems to tackle when recovering an ar-
chitecture is to capture differences between the source code
organization and the mental model behind high-level arti-
facts. Murphy et al. proposed an approach named Software
Reflexion Model to capture and exploit these differences.
In his thesis, Koschke [67] proposed an approach to com-
bine the different techniques by using a union of fuzzy sets,
to benefit from each one, and combined these results with
information obtained from system experts/developers. As
discussed in Linda Wills’ PhD thesis [114] and in many fol-
lowing papers, cliché matching is an effective strategy for
architecture recovery. Fiutem et al. [47] proposed an ap-
proach to detect architectural connectors — such as pipes,
shared memory, remote procedure call, socket, etc. — by
using cliché matching over control flow and data flow infor-
mation. Cliché matching was, more recently, used for semi–
automatic architecture recovery by Sartipi [97], who devel-
oped an architecture recovery tool called Alborz and a query
language named Architectural Query Language (AQL).

Substantial work was done in the area of data reverse
engineering [94], with the aim of understanding and/or re-

structuring existing data structures or databases [14] and,
above all, to cope with the Y2K problem. Thanks also
to the use of reverse engineering techniques, maintainers
were able to identify and maintain source code portions not
compliant with the change of millennium. This helped to
save billions of dollars and prevent major damage which
the fault could have caused. This, and the fact that legacy
systems survived the introduction of new technologies (e.g.,
the Web) thanks to reverse engineering and reengineering
techniques, are significant examples of how industry greatly
benefited of reverse engineering.

Relevant work has been performed in the area of pro-
gram slicing, dicing and chopping. Over 25 years after the
seminal paper by Weiser [112], many different kinds of slic-
ing techniques have been developed, and studies have been
carried out to compare different slicing approaches [35].
Robust and effective slicing tools, such as CodeSurfer [52]
or Indus [61] are now available.

Last, but not least, these early years of reverse engineer-
ing have seen the development of approaches for binary re-
verse engineering, i.e., to extract the source code or high-
level representation from the binary when the source code
is not available [29].

3 A Decade of Achievements in Reverse En-
gineering

This section discusses the main achievements of reverse
engineering in the last 10 years. Many of them comes af-
ter the Müller et al. FoSE 2000 paper [91], and actually
tackle problems and challenges outlined in their paper. The
discussion is organized around three main threads: program
analysis and its applications, design recovery, and software
visualization, and is intended as a baseline to draft the road
map for future research.

3.1 Program analysis and its applications

The past years saw the development of several program
analysis techniques and tools. Some of them rely on static
analysis techniques, while recent years have seen an in-
creasing use of dynamic analysis as an effective way to
complement static analysis [44, 104]: although dynamic
analysis can be expensive and incomplete, it is necessary
to deal with many reverse engineering problems where just
static analysis does not suffice.

Currently, several analysis and transformation toolkits
are available to help reverse engineers in their tasks. For
example, the Design Maintenance System (DMS) [9] devel-
oped by Semantic Designs, the TXL [33], or the Stratego
toolkit [15]. These toolkits provide facilities for parsing the
source code and performing rule-based transformations.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Despite the effort put into the development of source
code analysis tools, and despite the maturity of parsing tech-
nology, the diffusion of a wide number of programming lan-
guages dialects — a phenomenon known as the “500 lan-
guage problem” [70] — or problems such as dealing with
macros and preprocessor directives, highlighted the need for
alternative source code analysis approaches. Moonen [88]
developed the idea of source code analysis through island
parsing and lake parsing, i.e., analyzing only the code frag-
ments relevant for a particular purpose.

Some of the most adopted source code analysis tools that
have been developed during recent years are fact extractors,
able to extract, even without the need for a thorough source
code parsing, relevant information from the source code.
Notable examples are MOOSE [39], SrcML [31], Colum-
bus [45], or Bauhaus [67]. The diffusion of different fact
extractors outlined the need for common schema to repre-
sent them [46], such as GXL [115] or the FAMIX meta-
model used by MOOSE.

In their FOSE 2000 paper, Müller et al. [91] highlighted
the need for incorporating reverse engineering techniques
into development environments or extensible editors like
Emacs, in order to facilitate their adoption by maintainers.
Today’s development environments such as Eclipse1 or Net-
Beans2 strongly favor such an idea of integration. In fact,
they permit the development of tools — including reverse
engineering tools — as plugins integrated into the develop-
ment environment, capable of interacting with other tools,
e.g. the source code editor, and capable of accessing on-
the-fly the AST of the source code file the programmer is
currently writing.

A substantial work on program analysis has been made
to deal with peculiarities introduced by object-oriented lan-
guages, e.g. with polymorphism. Examples are the use
of points-to-analysis [13] to determine the set of possible
methods that a method invocation refers to [85], or the use
of points-to and data flow analysis to analyze exception han-
dling [48].

An intriguing phenomenon that has inspired a lot of suc-
cessful research effort is the presence of clones in software
systems (Figure 3 shows an example of clones from the
Linux Kernel). The outcome was the production of differ-
ent techniques, i.e., token-based [7, 62], AST-based [10],
metrics-based [81], each one ensuring different advantages,
such as high precision (AST-based) or high recall (token-
based), language independence, or the ability to detect pla-
giarism (metric-based). Empirical studies have been carried
out to analyze the presence and the evolution of clones in
large software systems [5, 50]: cloning percentage tends
to remain stable: while new clones appear, old ones are
refactored. Finally, contrary to common wisdom, it has

1http://www.eclipse.org
2http://www.netbeans.org

been found that the presence of clones is not necessarily
a bad smell and a harmful phenomenon [63]: provided that
maintainers are aware of their presence, clones constitute a
widely adopted mechanism to facilitate software develop-
ment (e.g., templating a similar piece of code) and reuse.
Clone removal, on the other hand, may be risky and unde-
sired [32].

Aspect oriented programming represents one of the new
frontiers of software development. It addresses the issue of
crosscutting concerns, i.e., of features spread across many
modules, with a new modularization unit, the aspect, that
encapsulates them. To support the maintenance of crosscut-
ting concerns, as well as to refactor them into aspects, it is
needed to identify them into the source code. With this in
mind, several aspect mining approaches have been devel-
oped. They are based on the analysis of method fan-in [79],
or dynamic analysis of execution traces [106].

The text contained in software systems, either in the form
of comments or of identifiers, has played a central role in re-
verse engineering. In particular, it has been used to recover
traceability links between different software artifacts, us-
ing Vector Space Models and Probabilistic Ranking [1], or
Latent Semantic Indexing (LSI) [76]. Also, textual analy-
sis using Information Retrieval techniques has been used to
perform a software quality assessment based on the similar-
ity between identifiers and comments [73], to measure the
conceptual cohesion of classes [77], or to perform semantic
clustering [69].

More details on the state-of-the-art and on future re-
search trends on program analysis are discussed in a FoSE
paper by David Binkley [13].

3.2 Architecture and design recovery

While research during the early nineties focused on re-
covering high-level architectures or diagrams from proce-
dural code, the diffusion of object-oriented languages, on
one hand, and of the Unified Modeling Language (UML)
on the other hand, introduced the need of reverse engineer-
ing UML models from source code.

Relevant work in this area was carried out by Tonella and
Potrich [107]. First, they proposed a static approach to re-
cover class diagrams. For object diagrams, it was needed
to combine static and dynamic information. Tonella and
Potrich showed that the static views, lacking in some flow
propagation information, need to be propagated with (pos-
sibly incomplete) dynamic information containing bindings
of class fields to objects. While Tonella and Potrich ex-
tracted sequence diagrams through a conservative, static
analysis on data flow, Systä combined static and dynamic
analysis for recovering UML diagrams [104]. Briand et
al. [17] also used dynamic analysis to recover sequence dia-
grams for distributed systems and, by means of transforma-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

linux-2.4.0/arch/mips/mm/init.c

mips
pte_t *get_pte_slow(pmd_t *pmd,

unsigned long offset)

{
pte_t *page;

page = (pte_t *) __get_free_page(GFP_KERNEL);
if (pmd_none(*pmd)) {

if (page) {
clear_page(page);

pmd_val(*pmd) =
(unsigned long)page;

return page + offset;
}
pmd_set(pmd, BAD_PAGETABLE);

return NULL;
}

free_page((unsigned long)page);
if (pmd_bad(*pmd)) {

__bad_pte(pmd);

return NULL;
}

return (pte_t *) pmd_page(*pmd) + offset;
}

linux-2.4.0/arch/mips64/mm/init.c
MIPS64

pte_t *get_pte_slow(pmd_t *pmd,
unsigned long offset)

{

pte_t *page;

page = (pte_t *) __get_free_pages(GFP_KERNEL, 0);
if (pmd_none(*pmd)) {

if (page) {

clear_page(page);
pmd_val(*pmd) =

unsigned long)page;
return page + offset;

}
pmd_set(pmd, BAD_PAGETABLE);
return NULL;

}
free_pages((unsigned long)page, 0);

if (pmd_bad(*pmd)) {
__bad_pte(pmd);
return NULL;

}
return (pte_t *) pmd_page(*pmd) + offset;

}

Figure 3. Example of clones in the Linux Kernel [5]

tions, they were able to recover detailed information such
as conditions, messages exchanged and data flow.

Object-oriented development was accompanied by the
diffusion of design patterns. From a reverse engineering
perspective, identifying design patterns into the source code
aims at promoting reuse and assessing code quality. Also in
this case, both static techniques [2, 53, 68, 108] and dy-
namic techniques [58] have been used. All the techniques
are based on cliché matching either on a portion of class di-
agrams (static approaches) or on execution traces (dynamic
approaches).

Feature identification and location represent widely and
successfully addressed research problems for reverse engi-
neering. Feature location is a technique aimed at identifying
subsets of a program source code activated when exercising
a piece of functionality. Bearing this in mind, techniques
using static analysis, dynamic analysis, and their combi-
nation, were proposed. Dynamic analysis techniques were
proposed for example by Wilde and Scully [113]. A static
technique based on Abstract System Dependencies Graph
(ASDG) was proposed by Chen and Rajlich [25]. Eisen-
barth et al. [41] combined the use of both static and dy-
namic data to identify features. After performing static
analysis, they used FCA to relate features. Antoniol and
Guéhéneuc [4] also combined static and dynamic analy-
sis. In their approach, the trace profiling was followed by
a knowledge-based filtering and by a probabilistic ranking
aimed at identifying events relevant to a particular feature.
Marcus and Poshyvanyk [78] used a completely different
technique, based on the application of LSI on the source
code. Their technique was then combined with the tech-
nique proposed by Antoniol and Guéhéneuc, producing bet-

ter results than the two individual techniques [93].
Finally, the large diffusion of the Web during the last ten

years has triggered the need for reverse engineering tech-
niques tied to Web Applications (WAs). Apart from re-
verse engineering-related conferences, research in this area
has been disseminated in the International Symposium on
Web Site Evolution (WSE). WAs present peculiarities that
require the need to develop new reverse engineering tech-
niques, or to adapt the existing ones. The interaction with
WAs happens through pages visualized in a browser and by
sending data from the browser to the Web server. As an
additional level of complexity, these pages — including the
scripting code to be executed by the browser — are dynam-
ically generated.

Tilley and Huang [105] compared the reverse engi-
neering capabilities of commercial WA development tools.
Clearly these capabilities did not suffice for reverse engi-
neering needs, and more had to be done. A significant
contribution to WAs reverse engineering was provided by
Ricca and Tonella, who developed the ReWeb tool to per-
form analyses on web sites [95], extending to WAs tradi-
tional static flow analyses. Di Lucca et al. proposed an
approach and a tool (WARE) to recover Conallens UML
documentation from WAs [37]. Architecture recovery of
WAs was addressed by Hassan and Holt [56]. The dynam-
icity of WAs was handled by Antoniol et al., who proposed
WANDA [3], a tool for dynamic analysis of WAs.

3.3 Visualization

Software visualization is a crucial step for reverse engi-
neering. The way information is presented to the developer

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Figure 4. Polymetric views extracted using
CodeCrawler [72]

or maintainer strongly impacts on the usefulness of the pro-
gram analysis or design recovery techniques. In some cases,
the choice of a proper visualization is straightforward, for
example when the reverse engineering techniques aim at ex-
tracting well-defined, widely adopted diagrams from source
code, e.g. UML diagrams, state machines, CFGs, etc. In
other cases, a visualization constitutes the essence of a re-
verse engineering technique, for its ability to highlight rele-
vant information at the right level of detail.

Examples of tools able to visualize statically extracted
information include the Rigi tool [116], CodeCrawler [72],
Seesoft [40], SHriMP [102], and sv3D [75]. Some of these
tools — like Rigi or SHriMP — aim at showing architec-
tural views. Other tools, like sv3D, provide a 3D visual-
ization of software artifact metrics. CodeCrawler combines
the capability of showing software entities and their rela-
tionships, with the capability of visualizing software met-
rics using polymetric views, which show different metrics
using the width, the length and the color if the boxes (see
Figure 4), and a similar approach, class blueprints [38],
to visualize information about classes. Other visualization
tools, such as Program Explorer [71], aim at visualizing
dynamic information, e.g., information extracted from exe-
cution traces.

4 Future trends of Reverse Engineering

This section discusses future reverse engineering trends
related to the three main areas of reverse engineering iden-
tified in Section 3.

4.1 Future trends in program analysis

One of the key challenges of program analysis for today
and tomorrow is to deal with high dynamicity. Many pro-
gramming languages widely used today allow for high dy-
namicity, which constitutes a powerful development mech-
anism, but makes analysis more difficult. For example, lan-
guages like Java introduce the concept of reflection and the

ability of loading classes at run-time. This affects many
analysis techniques, like static points-to analysis: with run-
time class loading it is not possible to determine the set of
objects a reference points to. Dynamic analysis is therefore
required as a necessary complement to static analysis. On
the other hand, mechanisms like reflection can ease some
analysis tasks, for example providing access to fields and
methods of a given class. Analysis facilities are also pro-
vided by the Java Virtual Machine (JVMTM) 1.5 through
the JVM Tool Interface (JVMTI): dynamic analysis can be
performed by getting information from it rather than by in-
strumenting the source code. This avoids the need for a
source code parsing/instrumentor and, above all, the need
for the source code itself.

Another important program analysis challenge is repre-
sented by cross-language applications. New program analy-
sis tools must be able to cope with the diversity of languages
and technologies used to develop a single software system.
If we consider, for example, WAs, they are often composed
of HTML fragments, server-side scripting and client side
scripting, database queries written in SQL. Works proposed
by Moise et al. [87] and by Strein et al. [103] represent steps
towards this direction.

New forms of programs will represent the source for fu-
ture applications of reverse engineering. One example is
represented by the need for analyzing artifacts produced by
what Burnett et al. defined as end-user programming [18],
i.e., the development of software by using productivity
tools. Assets such as word processors and spreadsheets have
to be considered as critical as the source code: errors in for-
mulae or macros would cost millions of dollars.

Reverse engineering research has highlighted the dual-
ism between static and dynamic analysis and the need to
complement the two techniques, trying to exploit the ad-
vantages of both and limit their disadvantages. Both static
and dynamic analysis techniques, however, can be used
to analyze a software system configuration snapshot, ig-
noring how software evolves during the time. Neverthe-
less, it would be useful to understand how software artifacts
change at a given release, whether some artifacts change
together, whether such changes are correlated with other
software characteristics (e.g., faultiness), etc. This kind of
analysis is nowadays feasible thanks to the wide use of ver-
sioning systems like the Concurrent Versions System (CVS)
or the Subversion (SVN), and of problem reporting systems
such as Bugzilla.

Intense research has been made during the last few years
in the analysis of these data sources, and a new, important
research area has appeared: mining software repositories.
Relevant work has been reported in software maintenance-
related conferences, at the Mining Software Repositories
(MSR) workshop, and in major journals [57]. Whilst this
kind of studies were conceived as an effective way for

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

studying software evolution, for analyzing the developers’
behavior or to correlate different software characteristics —
e.g., faultiness with metric profiles [54] — recently soft-
ware repository information has been used as an alterna-
tive or complementary way of software analysis. For exam-
ple, Geiger et al. [49] related clones with software reposi-
tories co-changes, and Canfora et al. with crosscutting con-
cerns [21].

During the last 10 years, software analysis moved from a
single dimension (static analysis) to two dimensions (static
and dynamic analysis) and, finally, today’s opportunity is to
add a third dimension consisting in the historical analysis of
data extracted from software repositories [24]. Change diffs
between file revisions, change coupling relationships be-
tween files being co-changed during the same time window,
but also relationships between bug reports and code repos-
itories, and the change rationale as documented in prob-
lem fixing reports and in CVS messages, constitute valu-
able sources of information complementary to static and dy-
namic analysis.

4.2 Future trends in design recovery

Forthcoming research related to design recovery needs
to be able to deal with design paradigms which analysts
and software architects are currently using. While a lot of
work has been done to extract UML documentation from
the source code, a lot still needs to be done in particular
for what regards the extraction of dynamic diagrams and
also of Object Constraint Language (OCL) pre and post-
conditions. On the other hand, there is the need to develop
design recovery approaches and tools for new software ar-
chitectures, that have characteristics of being extremely dy-
namic, highly distributed, self-configurable and heteroge-
neous. We will discuss these issues in Section 5.2 for the
analysis of Service Oriented Architectures (SOA).

In Section 3 we highlighted the important role played by
WA reverse engineering in the last ten years. Web applica-
tions are now moving towards Web 2.0, and this will have
non-negligible effects on reverse engineering. For exam-
ple there will be the need for techniques able to support the
migration of existing WAs — composed of multiple pages
interacting with the users by means of HTML forms — to-
wards Web 2.0 applications where the user interacts with a
single page. Further challenges will be related to the capa-
bility of reverse engineering to deal with the number of new
technologies being used into new WAs.

Reverse engineering literature reports several ap-
proaches claiming to recover design or any higher-level ar-
tifact from the source code. Based on what is discussed
in Section 3, design recovery aims not only at extracting
information available in the source code to produce higher-
level artifacts, but also at complementing it with informa-

tion coming from developers’ rationale. With this in mind,
design recovery approaches proposed so far have two limi-
tations:

1. They are either incomplete or imprecise, i.e., can com-
promise the recall to ensure good precision or vice
versa;

2. They are semi-automatic, i.e., their application re-
quires inputs from the human expert to complement or
correct the information automatically extracted. When
an approach is completely automatic, this compro-
mises its precision or recall, or the obtained design is
only partially usable by the maintainer.

Program comprehension tasks would greatly benefit
from the possibility of interactively improving the way an
artifact is presented to the maintainer while the latter pro-
vides feedbacks to the reverse engineering system.

Future activities in reverse engineering should push to-
wards a tight integration of human feedbacks into automatic
reverse engineering techniques. In other words, the reverse
engineering machinery should be able to learn from expert
feedbacks to automatically produce results. Machine learn-
ing, meta-heuristics and artificial intelligence make avail-
able plenty of mechanisms able to exploit feedbacks pro-
vided during the computation. To mention some examples,
the Rocchio feedback mechanism can be used to interac-
tively improve results of Vector Space Models. For exam-
ple, Huffman Hayes et al. used relevance feedbacks to im-
prove traceability recovery [59]. Also, heuristics such as
Genetic Algorithms (GAs) provide a way for building fit-
ness functions from user feedbacks. Such a mechanism is
named Interactive GAs (IGAs) (see for instance, the work
by Llora et al. [74]) and can be potentially applied to im-
prove heuristic-based approaches to reverse engineering,
such as clustering, design pattern recovery, and refactoring
identification. Further details on the use of interactive fit-
ness functions in software engineering can be found in Har-
man’s FoSE paper [55].

Last, but not least, reverse engineering can move steps
further from recovering design artifacts: requirements are
also an important output that can be produced by reverse
engineering [117].

4.3 Future Trends in Software Visualiza-
tion

Despite the amount of work done in software visualiza-
tion, there has been a long and repetitive discussion in the
reverse engineering community regarding the usefulness of
visualizations. Effective visualizations should be able to:

1. show the right level of detail a particular user needs,
and let the user choose to view an artifact at a deeper

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

level or detail, or to have a coarse-grain, in-the-large,
view;

2. show the information in a form the user is able to
understand. Simpler visualizations should be favored
over more complex ones, like 3D or animations, when
this does not necessarily bring additional information
that cannot be visualized in a simpler way.

While other reverse engineering techniques can be val-
idated in a relatively easy manner — e.g., analyzing open
source systems that, with the time, became benchmarks for
the comparison of some techniques — this is more diffi-
cult for visualizations. Experimentations aiming at investi-
gating visualization usefulness, effectiveness, and scalabil-
ity are more and more needed. It is important to also note
that assessing visualization techniques require the study of
the mental models programmers build when understand-
ing software [101]. Finally, experimentation for assess-
ing software visualizations can nowadays make use of ad-
vanced monitoring systems, for example eye-tracking tools,
to monitor if and how a subject, during the experimental
task, uses a particular visualization.

The mechanisms behind SOA or autonomic systems are
quite complex and, as will be better explained in Sec-
tion 5.2, their understanding is necessary to debug these sys-
tems in case of failures, or to perform maintenance. Visu-
alization research should work more in this area, providing,
for example, support to visualize dynamic service composi-
tions, service binding and reconfiguration.

5 Reverse Engineering in Emerging Software
Development Scenarios

Different areas of reverse engineering need to deal with
the new development paradigms and technologies. The fol-
lowing subsections highlight a series of issues and chal-
lenges for reverse engineers. In our opinion, reverse en-
gineering of the future years must be able to cope with:

1. on the one hand, the analysis of systems having high
dynamism, distribution and heterogeneity and, on the
other hand, support their development by providing
techniques to help developers enable mechanisms such
as automatic discovery and reconfiguration;

2. the need for a full integration of reverse engineer-
ing with the development process, which will bene-
fit from on-the-fly application of reverse engineering
techniques while a developer is writing the code, work-
ing on a design model, etc.

5.1 Continuous Reverse Engineering: Us-
ing Reverse during Forward Develop-
ment

Müller et al. [91] highlighted the idea of exploiting in-
formation extracted by reverse engineering in the forward
development process, i.e., making some information or ar-
tifacts, e.g., architectural views, design diagrams, traceabil-
ity links, available to the developers by using reverse engi-
neering techniques. Today’s maturity of several pieces of
reverse engineering technology, and the availability of ex-
tensible development environments enable the possibility of
continuously performing reverse engineering while a soft-
ware system is being developed. This idea has been applied
in other areas of software engineering: for example Saff
and Ernst [96] proposed the idea of continuous testing, i.e.,
of repeatedly executing unit test cases while developing or
maintaining a piece of functionality for which the developer
has already specified unit test cases.

In the context of reverse engineering, this would entail
different benefits. First, by extracting and continuously up-
dating high-level views (e.g., architectural views, or design
diagrams such as class diagrams, sequence diagrams, stat-
echarts) from the source code under development, it would
be possible to provide the developer with a clearer picture of
the system being created. Second, when artifacts at different
levels of abstraction are available, a continuous consistency
check between them could help to reduce development er-
rors, for example checking whether the code is consistent
with the design or complies with pre and post conditions.
Third, a continuous analysis of the code under development
and of other artifacts can be used to provide developers with
useful insights, e.g., suggesting the use of a particular com-
ponent or to improve the source code quality, for instance
by improving the level of comments, by increasing its co-
hesion, etc.

One piece of reverse engineering technology that can be
put in this context is clone detection. The developer can
continuously monitor the presence of clones when com-
mitting files via a versioning system, or even while writ-
ing / maintaining the source code. For example, while a
developer maintains a cloned piece of software, the devel-
opment environment could warn her/him about the pres-
ence of similar artifacts that might need to be consistently
changed. Also, differences between a single code fragment
under development and other clones may highlight possi-
ble programming mistakes. In the same direction, it would
be possible to continuously monitor the presence of bad
smells [111] and to suggest refactoring opportunities, also
considering that development environments provide support
for automatic refactoring.

Traceability links tend to be lost during development and
maintenance and, as described in Section 3, they can be

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

recovered using techniques that assume the consistency of
identifiers/terms across different software artifacts, from re-
quirements to the source code. The same idea can be ex-
ploited to guide developers in properly naming identifiers
and commenting the source code. For example, De Lucia et
al. [36] developed a plugin capable of indicating the trace-
ability level between high level artifacts and the code under
development. Poorly named identifiers not only make trace-
ability recovery difficult, but also make the code difficult
to be understood. In the same direction it would be pos-
sible to automatically provide developers insights to name
identifiers, learning naming conventions from existing code
and extracting domain terms from requirements and design.
Also, keeping track of some metrics, such as the Chidamber
and Kemerer metrics [27] or the conceptual cohesion [77]
would improve the quality of software under development,
also and possibly reducing the presence of faults [54].

Continuous reverse engineering can be used to support
code documentation and to keep documentation aligned
during development. Maintenance / development actions
over source code, design diagrams, test cases can trigger
analysis on the other artifacts and highlight the need for
consistency alignment or repairing (e.g., test cases might
need to be repaired because the application is being main-
tained [83]).

In a similar fashion, there is space for the integration of
many reverse engineering approaches in an agile develop-
ment or reenginering process [20] as a continuous, on-the-
fly feedback. This because (i) in agile processes the docu-
mentation is scarce or does not exist at all; (ii) the quality
assurance is limited to some unit and acceptance testing;
and (iii) above all,software products are incrementally cre-
ated through small analysis-to-code iterations, that make the
continuous update of reverse engineered artifacts highly de-
sirable.

5.2 Reverse Engineering for Service Ori-
ented Architectures and Autonomic
Computing

Modern organizations worldwide strive for agility to
keep competitive in a high pressure marketplace. SOA and
autonomic computing are an emerging answer to this need:
the first one focuses on the development of highly dynamic,
inter-organizational systems, with a clear separation of the
possession and ownership of software (software as a prod-
uct) from its use (software as a service) [109]; the second
one [65] promotes self-adaptation and self-evolution mech-
anisms in software systems.

As highlighted by Gold et al. [51], while SOA repre-
sent the next (today we may say the new) revolution of soft-
ware development, they pose relevant software understand-
ing issues. A service oriented system is composed of dis-

tributed services provided by different organizations. Each
service offers, through its interface, a limited view of the
features it makes available: providers “sell” the usage of
a service but want to protect the technology behind it and
the implementation details. Furthermore, when some doc-
umentation/specification is available, it cannot be ensured
that different service providers, belonging to different orga-
nizations or different domains, use the same terminology,
the same formalism, and even provide the same amount of
information. All these factors affect the service understand-
ability and, being the implementation not available for re-
verse engineering, black box understanding techniques such
as those used in the past by Korel [66] need to be used.

An important issue, when dealing with services, partic-
ularly in the stage of orchestrating a set of services into a
business process, is to comprehend how services relate to
each other and what are the differences and commonalities
among the operations they publish.

Service oriented systems and, more generally, systems
with autonomic capabilities, comprise the ability to au-
tonomously perform some actions like:

• automatic discovery: when a service, or even an entire
piece of a service composition is not available or not
capable of providing the requested level of function-
ality, automatically discover [92] new services, bind
them or even modify the way they are composed, and
continue the execution;

• self-healing [8]: the system execution is continu-
ously monitored until some events trigger recovery
actions such as changing a composition, reconfigur-
ing/repairing the system, interrupting the execution,
etc.

These features have important consequences on the sys-
tem’s understandability and as a side effect, on its maintain-
ability especially in case the self-healing or automatic dis-
covery and composition mechanisms are not working prop-
erly. In this context, the limited observability of services is
not the only challenge for analyzability: it is necessary to
cope with the extremely high dynamism and with the fact
that pieces composing the system may only be known at ex-
ecution time. In other words, dynamic discovery and bind-
ing would represent a problem with analogies to points-to
analysis, but with much more difficulties since, in this case,
it is not even possible to determine a-priori the set of possi-
ble end points.

As also pointed out by Müller [90], continuously evolv-
ing systems can benefit from reverse engineering and
reengineering techniques, that can be used to instrument
evolving software-intensive systems with autonomic ele-
ments. On the other side of the coin, reverse engineering
may provide an important contribution for the realization
of autonomic systems and of SOA providing features such

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

as dynamic discovery and binding. The realization of this
kind of systems is, in fact, today limited because, in order to
work properly, services/components have to expose infor-
mation such as their semantics, the expected level of Qual-
ity of Service (QoS), their state machine, or even part of
their internal state. In many cases this simply does not hap-
pen: anyone who publishes a service just exposes the signa-
tures of its operations (in terms of a Web Service Descrip-
tion Language (WSDL) interface in the case of Web ser-
vices) often automatically generated from the source code.
Limited effort available, short time-to-market, limited com-
petencies are — together with the lack of well defined and
standard description languages — the main factors slowing
down the diffusion of SOA.

Upcoming work in reverse engineering can support
service providers to (semi) automatically produce ser-
vice/component annotations capable of supporting auto-
matic discovery and reconfiguration mechanisms. Of
course this kind of automatically extracted information can
be different from what today is assumed by the already de-
veloped automatic discovery and composition mechanisms,
necessitating a step back and a re-thinking for some of them.
A viable alternative to the use of semantic annotations for
pursuing discovery, composition and reconfiguration can
consist in some forms of execution traces, fingerprints ex-
tracted from the source code, part of the internal state of
a component, or monitoring data. Reverse engineering is
surely a great support for making this information available.

Last, but not least, SOA represent an opportunity to re-
verse engineering researchers to put together their efforts
when building new tools and creating new pieces of re-
search. Source code analysis and reverse engineering tools
can be published as services so that every time one needs
to realize a new tool can build part of it by just using some
service. A reverse engineering tool can be realized by com-
posing a parsing service, a service for identifying clones,
one for instrumenting the source code, one for extracting
UML documentation, etc. The biggest challenge that is to-
day limiting this interoperability is the need for common
schema/ontologies to represent tool input/outputs.

6 Favoring the Adoption of Reverse Engi-
neering and its Tools

Despite the maturity of reverse engineering research, and
the fact that many pieces of reverse engineering work seem
to timely solve crucial problems and to answer relevant in-
dustry needs, its adoption in industry is still limited. In our
opinion, there are a few directions in which it is important
to push forward:

1. Reverse engineering education: most software en-
gineering and computer science curricula comprise

a number of design-process and design-methods
courses. These courses teach engineering design fun-
damentals utilizing repeatable design techniques and
processes. However, very few courses use reverse en-
gineering as a means to teach designing a software sys-
tem as it happens most of the times in the real-world,
that is by evolving an existing system based on new
and emerging requirements and needs. Teaching re-
verse engineering as an integral part of the software
design process — and not only as techniques to handle
changes — will increase the consciousness of the role
of reverse engineering, thus helping to reduce the bar-
riers, companies have to invest on reverse engineering
or either to adopt reverse engineering practices;

2. Achieving better empirical evidence: especially dur-
ing recent years, the majority of the reverse engineer-
ing research has been empirically validated with stud-
ies aiming at measuring the performance of a tech-
nique or to compare it with existing ones. Neverthe-
less, the empirical maturity of this research area still
needs to be improved. In his keynote at WCRE 2006,
Briand [16] identified three dimensions to evaluate re-
verse engineering research: inputs, analysis process,
and outputs. Outputs need to be evaluated in terms of
correctness, completeness and usefulness to carry out
a specific task. The analysis process needs to be eval-
uated in terms of performance and scalability. A chal-
lenging problem for the evaluation of reverse engineer-
ing research is the need for benchmarks [42], which are
necessary to compare similar research approaches. Ex-
amples of benchmarks have been successfully applied
for feature location (e.g., XFig) or for evaluating C++
extractors [43]. Finally, human factors play a relevant
role in the use of reverse engineering tools and, above
all, in software understanding tasks, raising the need to
run controlled experiments;

3. Increasing tool maturity and interoperability: it might
be argued this may or may not be the role of re-
searchers, however the availability of mature reverse
engineering tools and their interoperability, by means
of sharing data format and common fact schema [39,
115] or by the ability to be composed as services (as
discussed in Section 5.2) will favor their usage and,
consequently, their adoption. Finally, what discussed
above regarding the empirical assessment of reverse
engineering techniques need to account that, in many
cases, results strongly depend on the maturity, robust-
ness and usability of tools.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Dynamic
analysis

Static analysis

Historical
analysis

Visualization
Program
Analysis

Design
Recovery

Support
for program

comprehension

Support
for software

maintenance and
reengineering

Enable
autonomic
computing
and SOA

Software
artifacts

Forward
engineering

Developer

Expert feedbacks

Reverse engineering process
Reverse

engineering
targets

Empirical
Assessment

Continuous
Reverse engineering

Education

Robust,
Usable and

Interoperable
tools

Factors favoring adoption

Figure 5. The role of reverse engineering

7 Concluding remarks

Figure 5 summarizes what could be, in our opinion, the
role of reverse engineering in future. Forthcoming reverse
engineering techniques will rely on information across three
different and complementary dimensions: static analysis,
dynamic analysis and, as a new dimension, historical analy-
sis of artifact evolution. Today and tomorrow software will
be characterized by high dynamicity, heterogeneity and dis-
tribution. This constitutes a big challenge for reverse engi-
neering, and it would not be possible to reverse engineer
such more and more complex software without properly
combining information along the three dimensions.

Future reverse engineering will be part of the develop-
ment process: it will be repeated over time on one and the
same system while it is being developed / evolved for vari-
ous purposes, from consistency checking to design rational-
ization. Human feedbacks will be fully integrated into the
reverse engineering process, and this suggests that the tra-
ditional dichotomy between automatic and semi-automatic
reverse engineering be overcame. Traditionally, automatic
reverse engineering has forced to trade-off between preci-
sion and recall, whereas semi-automatic reverse engineer-
ing has used human feedback to improve the specific arti-
facts and views being produced, not the production process
itself. We envision a new generation of reverse engineer-
ing techniques and tools with self-managing features. The
basic idea is that the reverse engineer feedback is used to
improve the reverse engineering process, not only a spe-

cific view; as a systems is continuously reverse engineered
during its life, the engineers feedback can be used to cap-
ture and store background and implicit knowledge on both
the system and the engineers. Thus, the results of a sys-
tem reverse engineering could improve over time not only in
terms of precision and recall, but also in terms of adequacy
to the engineers style of work and task at hand. Building
these features into future reverse engineering methods and
tools poses many challenges to research: how could back-
ground and implicit knowledge be captured from the inter-
action with reverse engineers? How could engineers feed-
back be used to learn better ways of reverse engineering a
system? What information need to be captured in the in-
teraction with an engineer to build a profile useful to guide
future reverse engineering? How could the knowledge of
tasks be provided to a reverse engineering tool so that out-
put be oriented towards the particular task at hand?

Another important aspect is related to the role reverse
engineering will play in the development process. The dif-
fusion of lightweight processes where requirement-to-code
cycles represents a reality of today’s software development
practice. These processes however require (i) a continuous
consistency check and alignment of software artifacts at dif-
ferent levels, and (ii) a continuous refactoring. The integra-
tion of reverse engineering tools into development environ-
ments will make this possible, enabling a tight form of con-
tinuous reverse engineering in which, during the forward
phase, artifacts are continuously analyzed and, if necessary,
transformed. Reverse engineering will continuosly present
to the developer updated information, each time changing
as the developer modifies the code, also reacting to previous
feedbacks. On its own, the reverse engineering machinery
improves the quality of the produced artifacts by exploiting
developer feedbacks.

The adoption of reverse engineering is still limited and
needs to be favored by means of three key enablers. First,
better education on this discipline at different levels of
scholarship is foreseen. Second, while reverse engineering
research is quite solid and published research papers con-
tain solid validation, further empirical studies will be nec-
essary to compare techniques, to assess their usefulness and
the usability of tools, and to understand in which circum-
stances particular techniques can be applied. The ultimate
role of empirical studies would be on the one hand to as-
sess existing reverse engineering theories, and, on the other
hand, for developing new theories that, as for program com-
prehension [100] can be used to make sense of data and
conclusions.

Finally, while industry should take the responsibility to
develop solid reverse engineering tools exploiting the re-
search that has been carried out, the production of usable
prototypes and, above all, favoring the integration and the
interoperability of different tools via common exchange for-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

mats and via emerging architectures like SOA, will be a
key factor in promoting the diffusion of reverse engineer-
ing technology.

Reverse engineering will have three main targets. Two
will be the usual ones, i.e., aiding software comprehension
and providing support for maintenance and reengineering.
In addition, new types of software systems are nowadays
being developed: autonomic systems, or SOA allowing fea-
tures such as automatic service discovery and reconfigura-
tion. In this context, the role of reverse engineering would
be to extract information needed to enable features such as
automatic discovery and compositions, and to support soft-
ware transformations necessary to make existing systems
self healing and automatically reconfigurable.

8 Acknowledgments

The authors would like to thank Lerina Aversano, David
Binkley, Luigi Cerulo, Mark Harman, Hausi Müller, and
Aaron Visaggio for providing helpful comments on early
drafts of this paper.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Trans. Software Eng., 28(10):970–
983, 2002.

[2] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem.
Object-oriented design patterns recovery. Journal of Sys-
tems and Software, 59(2):181–196, 2001.

[3] G. Antoniol, M. Di Penta, and M. Zazzara. Understanding
web applications through dynamic analysis. In 12th In-
ternational Workshop on Program Comprehension (IWPC
2004), 24-26 June 2004, Bari, Italy, pages 120–131, 2004.

[4] G. Antoniol and Y.-G. Guéhéneuc. Feature identification:
An epidemiological metaphor. IEEE Trans. Software Eng.,
32(9):627–641, 2006.

[5] G. Antoniol, E. Merlo, U. Villano, and M. Di Penta. Ana-
lyzing cloning evolution in the Linux Kernel. Information
and Software Technology, 44:755–765, Oct 2002.

[6] R. S. Arnold and S. A. Bohner. Impact analysis - towards
a framework for comparison. In Proceedings of the Con-
ference on Software Maintenance, ICSM 1993, Montréal,
Quebec, Canada, September 1993, pages 292–301, 1993.

[7] B. S. Baker. On finding duplication and near-duplication
in large software systems. In Proceedings of the Work-
ing Conference on Reverse Engineering, pages 86–95, July
1995.

[8] L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for
Composed Services. In Proc. 2nd International Confer-
ence on Service Oriented Computing (ICSOC’04), pages
193–202, New York, USA, November 2004. ACM.

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: program
transformations for practical scalable software evolution.

In 26th International Conference on Software Engineering
(ICSE 2004), 23-28 May 2004, Edinburgh, United King-
dom, pages 625–634, 2004.

[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using Abstract Syntax Trees. In
Proceedings of the International Conference on Software
Maintenance, pages 368–377, 1998.

[11] P. Benedusi, A. Cimitile, and U. de Carlini. Reverse engi-
neering processes, design document production, and struc-
ture charts. Journal of Systems and Software, 19(3):225–
245, 1992.

[12] T. Biggerstaff. Design recovery for maintenance and reuse.
IEEE Computer, Jul 1989.

[13] D. Binkley. Source code analysis: A road map. In ICSE -
Future of SE Track, 2007.

[14] M. R. Blaha. Dimensions of database reverse engineering.
In Proceedings of the Working Conference on Reverse En-
gineering, pages 176–183, 1997.

[15] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.16: components for transformation systems.
In Proceedings of the 2006 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program Manip-
ulation, 2006, Charleston, South Carolina, USA, January
9-10, 2006, pages 95–99, 2006.

[16] L. C. Briand. The experimental paradigm in reverse engi-
neering: Role, challenges, and limitations. In Proceedings
of the 13th Working Conference on Reverse Engineering
(WCRE 2006), October 2006, Benevento, Italy, pages 3–8,
Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[17] L. C. Briand, Y. Labiche, and J. Leduc. Toward the re-
verse engineering of uml sequence diagrams for distributed
java software. IEEE Trans. Software Eng., 32(9):642–663,
2006.

[18] M. Burnett, C. Cook, and G. Rothermel. End-user software
engineering. Commun. ACM, 47(9):53–58, 2004.

[19] E. J. Byrne. Software reverse engineering. Softw., Pract.
Exper., 21(12):1349–1364, 1991.

[20] M. I. Cagnin, J. C. Maldonado, F. S. R. Germano, and
R. Dellosso Penteado. PARFAIT: towards a framework-
based agile reengineering process. In 2003 Agile Develop-
ment Conference (ADC 2003), 25-28 June 2003, Salt Lake
City, UT, USA, pages 22–31, 2003.

[21] G. Canfora, L. Cerulo, and M. Di Penta. On the use of
line co-change for identifying crosscutting concern code.
In Proceedings of the 22nd International Conference on
Software Maintenance (ICSM 2006), September 2006,
Philadelphia, PA, USA, pages 213–222, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[22] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca.
Decomposing legacy programs: a first step towards migrat-
ing to client-server platforms. Journal of Systems and Soft-
ware, 54(2):99–110, 2000.

[23] G. Canfora, A. Cimitile, and M. Munro. Reverse engineer-
ing and reuse re-engineering. Journal of Software Mainte-
nance and Evolution - Research and Practice, 6(2):53–72,
1994.

[24] L. Cerulo. On the Use of Process Trails to Understand
Software Development. PhD thesis, RCOST - University
of Sannio, Italy, 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[25] K. Chen and V. Rajlich. Case study of feature location
using dependence graph. In Proceedings of the Interna-
tional Workshop on Program Comprehension, pages 241–
250. IEEE Computer Society, 2000.

[26] Y.-F. Chen, M. Y. Nishimoto, and C. V. Ramamoorthy. The
C information abstraction system. IEEE Trans. Software
Eng., 16(3):325–334, 1990.

[27] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software Eng.,
20(6):476–493, 1994.

[28] E. Chikofsky and J. I. Cross. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, 7(1):13–17,
Jan 1990.

[29] C. Cifuentes and K. J. Gough. Decompilation of binary
programs. Softw., Pract. Exper., 25(7):811–829, 1995.

[30] A. Cimitile, A. De Lucia, G. A. Di Lucca, and A. R. Fa-
solino. Identifying objects in legacy systems using design
metrics. Journal of Systems and Software, 44(3):199–211,
1999.

[31] M. L. Collard, H. H. Kagdi, and J. I. Maletic. An XML-
based lightweight C++ fact extractor. In 11th International
Workshop on Program Comprehension (IWPC 2003), May
10-11, 2003, Portland, Oregon, USA, pages 134–143.
IEEE Computer Society, 2003.

[32] J. R. Cordy. Comprehending reality - practical barriers to
industrial adoption of software maintenance automation. In
11th International Workshop on Program Comprehension
(IWPC 2003), May 10-11, 2003, Portland, Oregon, USA,
pages 196–206, 2003.

[33] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schnei-
der. Source transformation in software engineering using
the TXL transformation system. Information & Software
Technology, 44(13):827–837, 2002.

[34] D. DaCosta, C. Dahn, S. Mancoridis, and V. Prevelakis.
Characterizing the ’security vulnerability likelihood’ of
software functions. In ICSM, pages 266–275. IEEE Com-
puter Society, 2003.

[35] A. De Lucia. Program slicing: Methods and applications.
In 1st IEEE International Workshop on Source Code Anal-
ysis and Manipulation (SCAM 2001), 10 November 2001,
Florence, Italy, pages 144–151, 2001.

[36] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo. Im-
proving comprehensibility of source code via traceability
information: a controlled experiment. In Proceedings of
the 14th International Conference on Program Compre-
hension (ICPC 2006), June 2006, Athens, Greece, pages
317–326, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[37] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. Re-
verse engineering Web applications: the WARE approach.
Journal of Software Maintenance, 16(1-2):71–101, 2004.

[38] S. Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. IEEE Trans. Soft-
ware Eng., 31(1):75–90, 2005.

[39] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-
sible language-independent environment for reengineering
object-oriented systems. In Proceedings of the Second
International Symposium on Constructing Software Engi-
neering Tools (CoSET 2000), 2000.

[40] S. G. Eick, J. L. Steffen, and E. E. S. Jr. Seesoft-a tool for
visualizing line oriented software statistics. IEEE Trans.
Software Eng., 18(11):957–968, 1992.

[41] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Trans. Software Eng.,
29(3):210–224, 2003.

[42] S. Elliott Sim, S. M. Easterbrook, and R. C. Holt. Using
benchmarking to advance research: A challenge to soft-
ware engineering. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), May 3-
10, 2003, Portland, Oregon, USA, pages 74–83, 2003.

[43] S. Elliott Sim, R. C. Holt, and S. M. Easterbrook. On using
a benchmark to evaluate C++ extractors. In Proceedings of
the International Workshop on Program Comprehension,
pages 114–126. IEEE Computer Society, 2002.

[44] M. D. Ernst. Static and dynamic analysis: synergy and
duality. In ICSE Workshop on Dynamic Analysis (WODA),
Portland, Oregon, USA, May 2003.

[45] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus - reverse engineering tool and schema for C++.
In Proceedings of the International Conference on Soft-
ware Maintenance, pages 172–181. IEEE Computer So-
ciety, 2002.

[46] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and
T. Gyimóthy. Towards a standard schema for C/C++. In
Proceedings of the Working Conference on Reverse Engi-
neering, pages 49–58, 2001.

[47] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A cliché-
based environment to support architectural reverse engi-
neering. In Proceedings of the International Conference
on Software Maintenance, pages 319–328. IEEE Computer
Society, 1996.

[48] C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott. Ro-
bustness testing of Java server applications. IEEE Trans.
Software Eng., 31(4):292–311, 2005.

[49] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In Proceedings of FASE
2005, number 3922 in Lecture Notes in Computer Science,
pages 411–425, Vienna, Austria, March 2006. Springer.

[50] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In Proceedings of the International
Conference on Software Maintenance, San Jose California,
October 2000. IEEE Press.

[51] N. Gold, C. Knight, A. Mohan, and M. Munro. Un-
derstanding service-oriented software. IEEE Software,
21(2):71–77, 2004.

[52] Grammatech Inc. The CodeSurfer slicing system, 2002.
[53] Y.-G. Guéhéneuc, H. A. Sahraoui, and F. Zaidi. Finger-

printing design patterns. In 11th Working Conference on
Reverse Engineering (WCRE 2004), 8-12 November 2004,
Delft, The Netherlands, pages 172–181, 2004.

[54] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Trans. Software Eng., 31(10):897–910,
2005.

[55] M. Harman. Software engineering optimization using
search based techniques. In ICSE - Future of SE Track,
2007.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[56] A. Hassan and R. Holt. Architecture recovery of web appli-
cations. In Proceedings of the International Conference on
Software Engineering, pages 349–359, Orlando, FL, USA,
May 2002.

[57] A. E. Hassan, A. Mockus, R. C. Holt, and P. M. Johnson.
Guest editor’s introduction: Special issue on mining soft-
ware repositories. IEEE Trans. Software Eng., 31(6):426–
428, 2005.

[58] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Auto-
matic design pattern detection. In 11th International Work-
shop on Program Comprehension (IWPC 2003), May 10-
11, 2003, Portland, Oregon, USA, pages 94–103, 2003.

[59] J. Huffman Hayes, A. Dekhtyar, and S. K. Sundaram. Ad-
vancing candidate link generation for requirements trac-
ing: The study of methods. IEEE Trans. Software Eng.,
32(1):4–19, 2006.

[60] IEEE. std 1219: Standard for Software maintenance. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1998.

[61] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: De-
livering the Indus Java program slicer to Eclipse. In Pro-
ceedings of FASE 2005,Edinburgh, UK, April 4-8, 2005,
pages 269–272, 2005.

[62] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A mul-
tilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, July 2002.

[63] C. Kapser and M. W. Godfrey. ’cloning considered harm-
ful’ considered harmful. In Proceedings of the 2006 Work-
ing Conference on Reverse Engineering, Benevento, Italy,
October 2006.

[64] R. Kazman, S. S. Woods, and S. J. Carrière. Require-
ments for integrating software architecture and reengineer-
ing models: Corum II. In Proceedings of the Working Con-
ference on Reverse Engineering, pages 154–163, 1998.

[65] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[66] B. Korel. Black-box understanding of COTS components.
In Proceedings of the International Workshop on Program
Comprehension, pages 92–101, 1999.

[67] R. Koschke. Atomic Architectural Component Recovery
for Program Understanding and Evolution. PhD thesis,
Univ. of Stuttgart, Germany, 2000.

[68] C. Krämer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In Proceedings of the Working Conference on Re-
verse Engineering, pages 208–215, 1996.

[69] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse engi-
neering with semantic clustering. In 12th Working Confer-
ence on Reverse Engineering (WCRE 2005), 7-11 Novem-
ber 2005, Pittsburgh, PA, USA, pages 133–142, 2005.

[70] R. Lämmel and C. Verhoef. Cracking the 500-language
problem. IEEE Software, 18(6):78–88, 2001.

[71] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of the Annual ACM SIGPLAN Conferences on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 342–357, 1995.

[72] M. Lanza and S. Ducasse. Polymetric views - a lightweight
visual approach to reverse engineering. IEEE Trans. Soft-
ware Eng., 29(9):782–795, 2003.

[73] D. J. Lawrie, H. Feild, and D. Binkley. Leveraged Qual-
ity Assessment using Information Retrieval techniques. In
Proceedings of the 14th International Conference on Pro-
gram Comprehension (ICPC 2006), June 2006, Athens,
Greece, pages 149–158, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[74] X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lak-
shmi. Combating user fatigue in iGAs: partial ordering,
support vector machines, and synthetic fitness. In Genetic
and Evolutionary Computation Conference, GECCO 2005,
Proceedings, Washington DC, USA, June 25-29, 2005,
pages 1363–1370, 2005.

[75] J. I. Maletic, A. Marcus, and L. Feng. Source Viewer 3D
(sv3D) - a framework for software visualization. In Pro-
ceedings of the 25th International Conference on Software
Engineering (ICSE 2003), May 3-10, 2003, Portland, Ore-
gon, USA, pages 812–813, 2003.

[76] A. Marcus and J. I. Maletic. Recovering documentation-
to-source-code traceability links using Latent Semantic In-
dexing. In Proceedings of the 25th International Con-
ference on Software Engineering (ICSE 2003), May 3-10,
2003, Portland, Oregon, USA, pages 125–137, 2003.

[77] A. Marcus and D. Poshyvanyk. The conceptual cohesion
of classes. In 21st IEEE International Conference on Soft-
ware Maintenance (ICSM 2005), 25-30 September 2005,
Budapest, Hungary, pages 133–142, 2005.

[78] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location in
source code. In Proceedings of the Working Conference
on Reverse Engineering, pages 214–223. IEEE Computer
Society, 2004.

[79] M. Marin, A. van Deursen, and L. Moonen. Identi-
fying aspects using fan-in analysis. In Proceedings of
the 11th Working Conference on Reverse Engineering
(WCRE2004), pages 132–141. IEEE CS Press, 2004.

[80] L. Markosian, P. Newcomb, R. Brand, S. Burson, and
T. Kitzmiller. Using an enabling technology to reengineer
legacy systems. Commun. ACM, 37(5):58–70, 1994.

[81] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance, pages 244–253, Monterey,
CA, Nov 1996.

[82] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for test-
ing. In 10th Working Conference on Reverse Engineering
(WCRE 2003), 13-16 November 2003, Victoria, Canada,
pages 260–269, 2003.

[83] A. M. Memon and M. L. Soffa. Regression testing of GUIs.
In ESEC / SIGSOFT FSE, pages 118–127, 2003.

[84] E. Merlo, P.-Y. Gagné, J.-F. Girard, K. Kontogiannis, L. J.
Hendren, P. Panangaden, and R. de Mori. Reengineering
user interfaces. IEEE Software, 12(1):64–73, 1995.

[85] A. Milanova, A. Rountev, and B. G. Ryder. Parameter-
ized object sensitivity for points-to analysis for java. ACM
Trans. Softw. Eng. Methodol., 14(1):1–41, 2005.

[86] B. S. Mitchell and S. Mancoridis. On the automatic modu-
larization of software systems using the Bunch Tool. IEEE
Trans. Software Eng., 32(3):193–208, 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[87] D. L. Moise, K. Wong, H. J. Hoover, and D. Hou. Reverse
engineering scripting language extensions. In Proceedings
of the 14th International Conference on Program Compre-
hension (ICPC 2006), June 2006, Athens, Greece, pages
295–306, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[88] L. Moonen. Generating robust parsers using island gram-
mars. In Proceedings of the Working Conference on Re-
verse Engineering, pages 13–22, 2001.

[89] M. Moore. User Interface Reengineering. PhD thesis,
Georgia Institute of Technology, USA, 1998.

[90] H. A. Müller. Bits of history, challenges for the future and
autonomic computing technology. In 13th Working Con-
ference on Reverse Engineering (WCRE 2006), 23-27 Oc-
tober 2006, Benevento, Italy, pages 9–18, 2006.

[91] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. D. Storey,
S. R. Tilley, and K. Wong. Reverse engineering: a
roadmap. In ICSE - Future of SE Track, pages 47–60, 2000.

[92] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic matching of Web services capabilities. In Pro-
ceedings of the first International Semantic Web Confer-
ence (ISWC 2002), volume 2348 of Lecture Notes on Com-
puter Science, pages 333–347. Springer-Verlag, June 2002.

[93] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Guéheneuc,
and G. Antoniol. Combining Probabilistic Ranking and
Latent Semantic Indexing for feature identification. In
Proceedings of the 14th International Conference on Pro-
gram Comprehension (ICPC 2006), June 2006, Athens,
Greece, pages 137–148, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[94] W. J. Premerlani and M. R. Blaha. An approach for re-
verse engineering of relational databases. Commun. ACM,
37(5):42–49, 134, 1994.

[95] F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In Proceedings of the International Conference on
Software Engineering, pages 25–34, Toronto, ON, Canada,
May 2001. IEEE Computer Society Press, Los Alamitos,
CA, USA.

[96] D. Saff and M. D. Ernst. Reducing wasted development
time via continuous testing. In 14th International Sym-
posium on Software Reliability Engineering (ISSRE 2003),
17-20 November 2003, Denver, CO, USA, pages 281–292,
2003.

[97] K. Sartipi. Software Architecture Recovery based-on Pat-
tern Matching. PhD thesis, Univ. of Waterloo, Canada,
2003.

[98] M. Siff and T. W. Reps. Identifying modules via con-
cept analysis. IEEE Trans. Software Eng., 25(6):749–768,
1999.

[99] H. M. Sneed. Encapsulation of legacy software: A tech-
nique for reusing legacy software components. Ann. Soft-
ware Eng., 9:293–313, 2000.

[100] M.-A. D. Storey. Theories, methods and tools in pro-
gram comprehension: Past, present and future. In 13th In-
ternational Workshop on Program Comprehension (IWPC
2005), 15-16 May 2005, St. Louis, MO, USA, pages 181–
191, 2005.

[101] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cogni-
tive design elements to support the construction of a mental

model during software exploration. Journal of Systems and
Software, 44(3):171–185, 1999.

[102] M.-A. D. Storey and H. A. Müller. Manipulating and docu-
menting software structures using shrimp views. In ICSM,
pages 275–284. IEEE Computer Society, 1995.

[103] D. Strein, H. Kratz, and W. Löwe. Cross-language pro-
gram analysis and refactoring. In Proceedings of the Inter-
national Workshop on Source Code Analysis and Manipu-
lation, pages 207–216. IEEE Computer Society, 2006.

[104] T. Systä. Static and Dynamic Reverse Engineering Tech-
niques for Java Software Systems. PhD thesis, Univ. of
Tampere, Finland, 2000.

[105] S. R. Tilley and S. Huang. Evaluating the reverse engineer-
ing capabilities of Web tools for understanding site content
and structure: A case study. In Proceedings of the 23rd
International Conference on Software Engineering, ICSE
2001, 12-19 May 2001, Toronto, Ontario, Canada, pages
514–523, 2001.

[106] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. In Proceedings
of the Working Conference on Reverse Engineering, pages
112–121, 2004.

[107] P. Tonella and A. Potrich. Reverse Engineering of Object
Oriented Code. Springer-Verlag, Berlin, Heidelberg, New
York, 2005.

[108] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis. Design pattern detection using similarity scoring.
IEEE Transactions on Software Engineering, 32(11):896–
909, 2006.

[109] M. Turner, D. Budgen, and P. Brereton. Turning software
into a service. IEEE Computer, 36(10):38–44, 2003.

[110] V. Tzerpos and R. C. Holt. Software botryology: Auto-
matic clustering of software systems. In DEXA Workshop,
pages 811–818. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1998.

[111] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. In 9th Working Conference on Re-
verse Engineering (WCRE 2002), 28 October - 1 Novem-
ber 2002, Richmond, VA, USA, pages 97–107, 2002.

[112] M. Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, July 1984.

[113] N. Wilde and M. C. Scully. Software reconnaissance: map-
ping program features to code. Journal of Software Main-
tenance, 7(1):49–62, 1995.

[114] L. M. Wills. Automated program recognition by graph
Parsing. PhD thesis, 1992.

[115] A. Winter, B. Kullbach, and V. Riediger. An overview
of the GXL graph exchange language. In Proc. of the
Software Visualisation International Seminar, LNCS 2269,
pages 324–336, Dagstuhl Castle, Germany, May 2002.
Springer-Verlag.

[116] K. Wong, S. Tilley, H. A. Muller, and M. D. Storey. Struc-
tural redocumentation: A case study. IEEE Software, pages
46–54, Jan 1995.

[117] Y. Yu, J. Mylopoulos, Y. Wang, S. Liaskos, A. Lapouch-
nian, Y. Zou, M. Littou, and J. C. S. P. Leite. RETR: reverse
engineering to requirements. In 12th Working Conference
on Reverse Engineering (WCRE 2005), 7-11 November
2005, Pittsburgh, PA, USA, page 234, 2005.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

