
COMMUNICATIONS OF THE ACM February 1998/Vol. 41, No. 2 27

Practical Legal Aspects of
SOFTWARE REVERSE

ENGINEERING

Whatever you do, make sure a derivative product
is not too much like the original.

Asignificant amount of litigation
involving computer software focuses
on reverse engineering. Unfortunately,
despite this litigation, reverse engi-
neering is probably one of the least

understood concepts by the courts, legal counsel, and
executives in the computer industry [3].

The U.S. Supreme Court has defined reverse engi-
neering as “a fair and honest means of starting with
the known product and working backwards to divine
the process which aided in its development or man-
ufacture.” Additionally, a U.S. District Court in
1989 defined it as “the process of starting with a fin-

ished product and working backwards to analyze
how the product operates or how it was made.”
Essentially, reverse engineering is the method by
which programmers study an existing program in
machine readable code by breaking it down into
human readable form to create a similar product or
one that can be used in conjunction with the exist-
ing software. This process of converting a program
from object code back into source code is known as
“decompilation,” or disassembly.

Some software developers claim reverse engineer-
ing is unlawful, because it is far too easy to take an
existing program, use reverse engineering to dis-

Brian C. Behrens and Reuven R. Levary

M
A

SA
K

O
 E

B
A

TA

cover how it operates, make slight modifications to
the original version, and market the amended ver-
sion as a new product. Indeed, if after reverse engi-
neering a program, a second program is developed
that is substantially similar to the original with
more in common than just its functional operations,
it is most likely a case of software copyright
infringement.

More recent cases, such as Sega Enterprises Ltd. v.
Accolade, Inc. [10] and Atari Games Corp. v. Nin-
tendo of America, Inc. [1], should allay this fear, as
certain requirements must now be met before an
altered program can be marketed as a “new” product.
Not all reverse engineering efforts are illegal; most
are not. Programmers use reverse engineering for
numerous reasons; producing a competitive program
is only one of them. For example, reverse engineer-

ing is used for breaking down software for the pur-
poses of teaching students how to write code; for
repairing malfunctioning software; to produce simi-
lar software to run on a different system; to modify a
program for use on one’s own computer; and to
develop software that operates in conjunction with
the original software [8].

The Fair Use Defense
Until some sort of legislative scheme is developed to
deal with the discrepancies in our current system,
how should attorneys advise their clients who are
contemplating reverse engineering a software prod-
uct? Although there is no certainty in this area,
recent case law has made it prudent to recognize sev-
eral caveats when undertaking a reverse engineering
project. First, the attorney should advise the client
to obtain an authorized copy of the software in ques-
tion. For example, one hurdle preventing Atari from
successfully asserting the fair use defense to counter
its software infringement charge was the fact that it
had “unclean hands” because it obtained a copy of
Nintendo’s source code by misrepresenting to the
Copyright Office that it needed the code for litiga-
tion in which it was involved [2]. The federal circuit
advised others that “[t]o invoke the fair use excep-
tion, an individual must possess an authorized copy

of a literary work” [2, 6]. In order to avoid tainting
a fair use defense, a software developer should obtain
a software program it wants to reverse engineer from
the open market, just as any other consumer would.

Additionally, one must be careful not to violate
any licensing agreements signed directly with a
computer company. For example, when a company,
like Sega, licenses other software companies to use
its code to produce games compatible with the Sega
video game system, these companies often must
promise not to attempt to reverse engineer any of
Sega’s codes for use in other games. Courts want to
uphold such agreements and will probably view any
reverse engineering in this circumstance as tainting
a later fair use defense. Remember, the recent trend
in court decisions is to accept the fair use defense and
allow computer companies to reverse engineer soft-

ware to advance technology and create market com-
petition for software—but not at the expense of
violating the more important public policy of avoid-
ing fraud and misrepresentations while encouraging
fair play.

Second, attorneys should advise their clients to be
sure there is no means to obtain the information in
the software other than by reverse engineering the
program. The court in the Sega case specifically
pointed out this caveat by stating, “[w]e conclude
that where disassembly is the only way to gain access
to the ideas and functional elements embodied in a
copyrighted computer program . . . disassembly is a
fair use of the copyrighted work, as a matter of law”
[4]. Indeed, some companies publish certain code to
allow for the development of compatible software.
Therefore, if the source code for a particular function
or process is obtainable by any other legal means, all
these avenues should be explored before reverse engi-
neering is undertaken.

Third, if reverse engineering can be used out of
necessity, engineers should be advised to reverse
engineer only the portions of the original program
needed to decipher the precise functional elements
required for the new program. Courts become wary
of reverse engineering efforts that use portions of the
original program to the extent the newly developed

28 February 1998/Vol. 41, No. 2 COMMUNICATIONS OF THE ACM

To be on the safe side,
be sure to avoid copying any

program components that relate
to a program’s expression,
or its aesthetic qualities.

software is similar in expression to the original. In
Lotus Development Corp. v. Paperback Software
International [5], the court held that Paperback
infringed on Lotus’s copyrighted software by devis-
ing its spreadsheet to have a look and feel similar to
Lotus’s popular 1-2-3 spreadsheet. Rather than copy
only the functional elements of 1-2-3, Paperback had
essentially copied much of Lotus’s aesthetic qualities
as well. While it is difficult to say when a court
would consider two programs to be too much alike,
the court in the Sega case attempted to give a few
examples of where reverse engineering may have
resulted in more than necessary portions of software
being copied. Unfortunately, however, these exam-
ples are somewhat vague and not readily applied to
everyday situations with confidence [7, 11]. Thus, to
be on the safe side, be sure to avoid copying any pro-
gram components that relate to a program’s expres-
sion, or its aesthetic qualities.

Fourth, software developers should be sure to
divide their reverse engineering efforts between two
groups of engineers/programmers—one group to
reverse engineer the program, the other to develop
the new software. This method of ensuring “clean
hands” is recommended so if a software developer is
later charged with software copyright infringement,
the company can produce records showing the newly
developed program did not involve directly copying
the original code. Specifically, this process begins
with the first group of programmers reverse engi-
neering the original software into the source code, so
it can be read by human programmers. Next, the
first group explains in a written journal or log the
functions of the original program, as well as the ideas
the program uses, without describing the expressive
content of how the program will look to users. This
journal is then given to the second group of pro-
grammers who attempt to design a program emulat-
ing the same functions and ideas. The second group
cannot communicate directly with the original
group, thus helping insulate the development
process from any direct copying of the code in the
original program. This process should ensure that
the end product of the newly developed program
looks somewhat different from the original program
that was reverse engineered. The new program can
then be marketed directly against the original pro-
gram with little fear of violating the original’s copy-
right protection [3, 9].

Fifth, despite following all these precautions, soft-
ware developers should conduct research on the
product to be reverse engineered to ensure that
patent law does not provide protection for the par-
ticular process or function that is to be reverse engi-

neered and used in a new program. Keep in mind
that even though copyright law cannot protect func-
tions and ideas, patent law does. Due to the rigorous
requirements that must be met in order to get a
patent on a certain function or process, few programs
are patented. Nevertheless, a software developer can
protect itself from patent infringement lawsuits by
inquiring into this area before reverse engineering
and marketing a new program.

Prudent software developers should consult with
intellectual property attorneys to be sure they are in
compliance with the latest case law. In this rapidly
progressing area of law, new cases are being ruled on
every day. As a result, the law could shift suddenly.

REFERENCES
1. Atari Games Corp. v. Nintendo of American, Inc., 975 F.2d 832 (Fed.

Cir. 1992).
2. Atari, 975 F. 2d at 843. The court noted that [b]ecause Atari was not

in authorized possession of the Copyright Office copy of 10NES, any
copying or derivative copying of 10NES source code from the Copyright
Office does not qualify as a fair use.”

3. Davis, G., III. Scope of protection of computer-based works: Reverse
engineering clean rooms and decompilation. In 15th Annual Computer
Law Institute. Handbook Series (Patent, Copyright, Trademarks, and Literary
Property Course), 1993, pages 1–15.

4. 977 F. 2d at 1527.
5. 740 F. Supp. 37 (D. Mass., 1990).
6. Harper & Row, 471 U.S. at 562-63 (where the court noted that know-

ing exploitation of purloined manuscript was not compatible with
“good faith” and “fair dealings” underpinnings of fair use doctrine).

7. Hayes, D. The legality of disassembly of computer programs. Com-
put./Law J. 14, 1 (Jan. 1992), 4–12.

8. Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., 780 F. Supp.
1283 (N.D. Cal. 1991), aff’d 964 F.2d 965 (9th Cir.1992) (where
Galoob manufactured the Game Genie, which attached to Nintendo’s
video game cartridges and modified the game temporarily to alter cer-
tain game aspects, such as allowing the player to obtain more “lives” in
a street battle. The court held reverse engineering to be an appropriate
use in order to design this attachment to work with Nintendo’s games).

9. McCabe, P. Reverse engineering of computer software: A trap for the
unwary? Comput. L. Assoc. Bul. 1, 2 (Feb. 1994), 1–15.

10. Sega Enterprises Ltd. v. Accolade, Inc., 977 F. 2d 1510 (9th Cir. 1992).
11. Whelan Associates, Inc. v. Jaslow Dental Lab, Inc., 797 F. 2d 1222 (3rd

Cir. 1986), cert denied, 479 U.S. 1031 (1987) (where the court devised
an approach to differentiate protected expression from unprotected func-
tions and ideas, an approach that has been roundly criticized).

Brian C. Behrens (bcb@suelthauswalsh.com) is an attorney in
the law firm Suelthaus & Walsh, P.C., specializing in business law
in St. Louis, Mo.
Reuven R. Levary (levarypr@sluvca.slu.edu) is a professor
of decision sciences in the Department of Decision Sciences and
MIS at Saint Louis University in St. Louis, Mo.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/98/0200 $3.50

c

COMMUNICATIONS OF THE ACM February 1998/Vol. 41, No. 2 29

