Reverse Engineering of Legacy Code Exposed’

Bruce W. Weide and Wayne D. Heym
Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210

{weide,heym} @cis.ohio-state.edu

Joseph E. Hollingsworth
Department of Computer Science
Indiana University Southeast, New Albany, IN 47150
jholly @ius.indiana.edu

Abstract — Reverse engineering of large legacy software
systems generally cannot meet its objectives because it
cannot be cost-effective. There are two main reasons for
this. First, it is very costly to “understand” legacy code
sufficiently well to permit changes to be made safely,
because reverse engineering of legacy code is intractable in
the usual computational complexity sense. Second, even if
legacy code could be cost-effectively reverse engineered,
the ultimate objective — re-engineering code to create a
system that will not need to be reverse engineered again in
the future — is presently unattainable. Not just crusty oid
systems, but even ones engineered today, from scratch,
cannot escape the clutches of intractability until software
engineers learn to design systems that support modular
reasoning about their behavior. We hope these observa-
tions serve as a wake-up call to those who dream of
developing high-quality software systems by transforming
them from defective raw materials.

1. Introduction

Most large software systems, even if apparently well-engi-
neered on a component-by-component basis, have proved
to be incoherent as a whole due to unanticipated long-range
“weird interactions” among supposedly independent parts.
The best anecdotal evidence for this conclusion comes
from reported experience dealing with legacy code, i.e.,
programs? in which too much has been invested just to
throw away but which have proved to be obscure,
mysterious, and brittle in the face of maintenance.

What should we do when we require a new system whose
behavior is intended to be similar to that of an old system
we already have? One option is to build the new one from
scratch, relying perhaps on experience obtained through

1 This position paper is adapted from [0,19].

2 We do not consider legacy systems that consist primarily of
data (e.g., databases).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ICSE '95, Seattle, Washington USA
© 1995 ACM 0-89791-708-1/95/0004...$3.50

327

design or use of the old one, but not relying substantially
on the old code. Another option is to try to understand the
old code well enough to keep much of it, modifying it to
meet the new needs. The latter approach — re-engineering
— necessarily involves reverse engineering:

Reverse engineering encompasses a wide array of
tasks related to understanding and modifying software
systems. Central to these tasks is identifying the
components of an existing software system and the
relationships among them. Also central is creating
high-level descriptions of various aspects of existing
systems. [15, p. 23]

We consider reverse engineering in its role as an integral
part of the re-engineering approach to new system devel-
opment. The objective of reverse engineering is not (just)
to create documents that chronicle a path from the original
requirements to the present legacy system as, say, a substi-
tute for the documentation that probably was not created
while that journey was in progress. The goal is to achieve
a sufficient understanding of the whats, hows, and whys of
the legacy system as a whole that its code can be re-engi-
neered to meet new requirements on behavior, perfor-
mance, structure, system dependencies, etc.

1.1. Reverse Engineering of Legacy Code is Intractable

There seems to be general agreement that, in practice,
reverse engineering of legacy code is at least quite
laborious [14]. Even if many aspects of large systems are
easy to understand, inevitably there is important behavior
whose ex planation is latent in the code yet which resolutely
resists discovery. The basic reason is that software engi-
neers seek modularity — and they generally achieve it well
enough create a very compact representation of system
behavior in the source code, but not well enough to support
modular reasoning about that behavior. In Sections 3-4 we
summarize how this implies that reverse engineering of
legacy code is intractable in the usual computational com-
plexity sense [19]. This fundamental conclusion and the
supporting argument follow up on a suggestion by Hopkins
and Sitaraman [9] that the effort required to reverse
engineer a system is related to the effort required to
formally verify its functional correctness. In fact, if we
argued that program verification of legacy code is
intractable, there probably would be little debate (at least
with those from whom the current position is likely to draw
fire). Yet these are technically equivalent.

1.2. Forward Engineering is Not a Solved Problem

Of course intractable does not mean impossible. One even
hears occasional stories about “successful” reverse and re-
engineering projects [1]. These should be taken with a
grain of salt, if only because the real problem — successful
re-engineering — cannot be known to have been solved for
years, after there is a long history of maintenance tasks to
sort through or the system has to be re-engineered again.
Even then, without a controlled study, there is no way to
know that building from scratch would not have been more
cost-effective. And even if the reverse engineering battle
can be won once, the re-engineering war ultimately will be
lost without subsequent use of forward engineering
techniques that effectively prevent software “rot”.

Unfortunately, almost without exception software
engineers do not know how to design and build truly
modular systems when starting from scratch, let alone
when starting from legacy code [17, 18]. Except for
egregiously poor design practices, they cannot distinguish
fair-to-good software designs from excellent ones. The
reason is that beyond “structured programming” aphorisms
there are almost no accepted community standards for what
software systems should be like at the detail level. By the
intractability argument, some key quality criteria would
seem to be understandability in general, and susceptibility
to modular reasoning about behavior in particular. Yet this
degree of modularity is almost universally not achieved by
designs in computer science textbooks, technical papers,
and commercial soft ware.

2. Observations and Implications

Reverse engineering of legacy code has proved to be such a
difficuit practical problem — experience which lends
credence to the thesis that it is intractable — that serious
attention ought to be devoted to the subject. This is
particularly true because the alternative is also costly. But
we need to have realistic expectations about the ultimate
role of reverse engineering in a comprehensive vision of
soft ware engineering. We are disturbed with the emphasis
on building tools to solve problems whose inherent
complexity suggests that those tools cannot be expected to
scale up to realistically large systems. And we are frankly
alarmed by the following sentiments, which seem typical
among reverse engineering advocates:

... while many of us may dream that the central busi-
ness of software engineering is creating clearly under-
stood new systems, the central business is really
upgrading poorly understood old systems. [15, p. 23]

[The problem of having to deal with] legacy software
is basically the result of management inaction rather
than technology deficiency... [1, p. 23]

Quite the contrary! Most software hasn’t been written yet,
and widely taught and practiced “modern” approaches to
the nuts-and-bolts of software engineering still do not lead
to well-designed modular systems. So, if we as a commu-
nity act as though we believe that “the central business [of

328

software engineering] is really upgrading poorly
understood old systems,” then we will squander a fortune
yet continue to face the Sisyphean task of upgrading poorly
understood old systems into slightly less poorly understood
new systems. We might have spent our efforts developing
and exploring truly productive techniques for forward
engineering of well-understood modular systems — and
this progress would help even those who insist that re-
engineering is ultimately where the action will be.

We mentioned above that reverse engineering is as hard as
program verification, and this leads to a common misunder-
standing about the claim of intractability. General program
verification is in principle unsolvable, because the verifica-
tion conditions generated from code and specifications
might include arbitrary mathematical assertions. The prac-
tical consequences of this observation, however, are
minimal. It can be used to show that there exist esoteric
systems for which program verification (hence reverse
engineering) is impossible; but it does not mean that
program verification/reverse engineering cannot succeed
on code that arises in practical situations. Our claim is
about such practical situations. Specifically, for all large
legacy systems, program verification/reverse engineering is
prohibitively expensive; not impossible in principle but
manifestly not cost-effective — and this bears directly on
the business decision regarding whether to re-engineer or to
build anew. The obvious rejoinder to this claim from
reverse engineering advocates is, “People do reverse
engineering all the time; how can it be prohibitively
expensive?” We address this question in Section 3.1.

The news is not all bad; we offer some assistance to reverse
engineering advocates. Specifically, by identifying threats
to modular reasoning from common design and coding
practices as a key technical factor that thwarts cost-effec-
tive reverse engineering, we implicitly suggest an area
where new reverse engineering tools might be helpful
— namely, finding such trouble spots. The ability to do
this will not change the underlying intractability but might
incrementally help those stuck with reverse engineering.

3. The Nature of the Reverse Engineering Task

At first glance, the conclusion that reverse engineering of
legacy code is doomed to fail strikes most people as either
ridiculous and wrong (the “reverse engineering advocates”
camp), or obvious and trivial (the “reverse engineering
skeptics” camp). Some hedge, claiming it could be either
depending on the definition of reverse engineering.

By the putative definition quoted in Section 1, reverse
engineering involves achieving an “understanding” [3, 12,
14] of a system, including “identifying the components of
an existing software system and the relationships among
them” and “creating high-level descriptions”. What does
this mean? We argue that successful reverse engineering of
alegacy system entails at least the following two subtasks:

(1) Identifying the functional components of the system
and the roles they play in producing the behavior of
the higher-level system that employs them.

(2) Creating a valid explanation of Aow and why the be-
havior of the higher-level system arises from these
functional components and their roles.

We use “functional” here in the sense of contributing to
functional run-time behavior. This means that the relevant
components of a system, from the standpoint of under-
standing system behavior, are not necessarily the structural
components of its source code (e.g., modules, subroutines,
loop bodies, statements). Some functional components
might correspond to easily-identified structural compo-
nents, but others might span several of them — especially
where interesting behavior arises from poor design or from
unanticipated interactions between structural components.

By “valid explanation” we mean, effectively, a proof that
the claimed higher-level behavior results from the identi-
fied functional components and roles. The challenges in
achieving understanding of a poorly understood system are
to generate a hypothesis, which is in fact correct, and to
establish why it is correct.

3.1. Testing vs. Proving

We now consider the claim, “People do reverse
engineering all the time; how can it be prohibitively
expensive?” Certainly one can define reverse engineering
so this is true. But what people really do all the time is to
make plausible hypotheses. They do not check the validity
of those hypotheses in any decisive way. They might, for
instance, make some changes to the code that should not
cause problems according to the hypothesis, then test to see
whether those changes cause obvious problems.

Such an approach can only hope to show that a hypothesis
is invalid, not that it is valid — a conclusion similar to the
well-known aphorism that program testing can only hope to
demonstrate the presence of bugs, not their absence. We
do not trick ourselves into believing we have built correct
software by defining the problem of building correct soft-
ware in such a way that testing alone is sufficient to decide
whether we have succeeded. Yet defining reverse
engineering to consist of hypothesize-and-test, not
hypothesize-and-prove,, amounts to the same thing.

Advocates of the weaker definition might contend that all
they are hoping for is to obtain “approximate” understand -
ing of a system. But an approximation is not sufficient to
achieve the ultimate objective of reverse engineering.
Furthermore, we can find no reasonable technical definition
of “approximate” reverse engineering. In any event there
must be an absolute standard by which to judge the quality
of an approximation. We therefore define successful
reverse engineering to entail decisive checking of the
validity of hypotheses, not merely guessing.

3.2. Substantive Hypotheses

The reverse engineering hypothesis should contribute
enough to the understanding of a system to suggest and/or
rule out potential modifications that are intended to achieve

329

the objective of the project. Biggerstaff, er al., seem to
summarize nicely:

A person understands a program when able to explain
the program, its structure, its behavior, its effects on its
operational context, and its relationships to its applica-
tion domain in terms that are qualitatively different
from the tokens used to construct the source code for
the program. [2, p. 72]

We therefore stipulate that reverse engineering hypothesis
H for system S should be substantive in that it is:

¢ Effective — it provides the ability to predict relevant
behavior of S (e.g., relevant input-output behavior) and
to answer questions about what-if situations (e.g., the
effects of various changes to the source code of S).

* Comprehensive — its validity cannot be decided by a
small set of test cases.

* Concise — it is at worst not much bigger than the
source code of S.

* Independent — it is not a paraphrase of the code of S.

* Systemic — judging its validity requires examining
essentially all the code of S.

The first property is basic to utility. All the others are
technically necessary to rule out trivial hypotheses that
might otherwise be seen as counterexamples to intractabil -
ity, but which in practice contribute nothing to the under-
standing of S. These conditions are not really very strong.
For example, nearly every non-trivial hypothesis is
systemic because there are many ways to get S to exhibit
unhypothesized behavior via long-range weird interactions
among its components. Whether a particular system actu-
ally has such interactions does not even matter; they might
exist because they are not ruled out by static (e.g.,
programming language) constraints. An instruction that
influences whether and why H holds might be lurking
anywhere in the code of S, and there is simply no way to
know whether it is there without looking for it.

4. The Intractability Result

The particular computational problem that we claim to be
intractable is the second reverse engineering subtask:

EXPLAIN — Given as input (S, H) — source code
for a system S and hypothesis H about that system’s
behavior — decide whether, and explain why, H does
or does not hold for S.

We do not need to account for the extra time it takes to
generate a hypothesis to be explained. There is every rea-
son to suspect that generating substantive hypotheses is
hard, too, but we do not need to or try to demonstrate this.

We claim there is a lower bound for EXPLAIN for valid
hypotheses which implies that reverse engineering of
legacy code (as defined in Section 3) is intractable:

EXPLAIN is Intractable — There is a constant ¢>1
such that, for every legacy system S and every valid
substantive hypothesis H, EXPLAIN(S,H) takes time
at least ¢!, where IS] is the size of S’s source code.

This result follows from two premises, which we outline
here because they are empirical statements which, in prin-
ciple, are falsifiable and therefore debatable. The main
argument is completed elsewhere [19].

4.1. Source Code is a Compact Representation of Behavior

It has long been accepted by software and other engineers
that the key to dealing with large systems is to design and
construct them by composing some smaller units that are
independent except at their interfaces — the objective of
modularity. One intended result of modularity is the ability
to reason modularly about program behavior. Liskov and
Guttag clearly state this objective in their description of
how we should like to reason about total correctness, but
the conclusion applies equally to reasoning about any
substantive hypothesis about system behavior:

We reason separately about the correctness of a proce-
dure’s implementation and about parts of the program
that call the procedure. To prove the correctness of a
procedure definition, we show that the procedure’s
body satisfies its specification. When reasoning about
invocations of a procedure, we use only the specifica-
tion. [11, p. 227-228]

This observation is based on something routinely taught to
first-year programmers: It is hopeless to reason about
execution of non-trivial programs by tracing instruction
execution sequences, either for particular values or by
symbolic execution, because even a small program can
describe arbitrarily long execution sequences through
recursive calls and looping. (Effective reasoning about
program behavior also requires loop bodies to be replaced
by specifications, e.g., loop invariants or loop functions.)
In short, it must be possible to reason about the effect of
any repeatedly-executed piece of code by using a specifi-
cation of that piece, without tracing the code for each
dynamically-occurring use of it. We take as a premise that
software engineers strive to achieve, and succeed in
achieving, part of what they have been taught — to encode
long execution sequences in a concise way by identifying
commonalities in source code and by factoring them out
into separate pieces that are used repeatedly.

Consider any instruction execution sequence E of system S,
and define |El as the length of a record of the steps (say, in-
structions) taken in E. We claim:

Compact Source Code Premise — There is a con-
stant ¢ > 1 such that, for every legacy system S and for
every substantive hypothesis H, there is some instruc-
tion execution sequence E which H purports to explain
and for which [El > !SI

This premise is really quite a weak statement about legacy
systems because most real code describes potential execu-

330

tion sequences that are not bounded a priori by any func-
tion of ISI, but only by the inputs to S. Consider that if E
were achieved by straight-line code, for example, then we
would need to have ISI = I[El. How could this hold for any
realistic system? Rephrased in these terms, the premise
says the source code for a real legacy system is substan-
tially smaller than the length of the longest behavior history
it can effect, i.e., its size is at most log.|El. Clearly this
always holds where there is no a priori bound on the
longest execution sequence of S.

4.2. Problems Result From Failed Attempts at Modularity

We should hope that software engineers always succeed in
separating specification from implementation in a way that
achieves modularity. However, designing and imple-
menting code that supports modular reasoning about behav-
tor is more subtle than it appears at first [13, 20]. Problems
arise from coupling through side-effects and aliased
variables [4, 7], arrays, pointers, and dynamic storage
management [6, 8], generics [5], inheritance [10, 16], and
from many other sources. Potentially troublesome tech-
niques are permitted by the programming languages used
for real legacy systems because, in the interest of
performance and other essential considerations, these
techniques can be useful when applied carefully.

However, history gives no evidence that software engineers
in practice do — or that they even know how to -— exercise
adequate care in the use of such powerful language
constructs. We therefore claim:

Non-Modularity Premise — Every legacy system is
hard to maintain because, in some crucial places, it has
been designed or coded so that modularity is not
achieved.

We need make no assumption about how the legacy system
got into this state. Perhaps the system was poorly under-
stood from day one, or perhaps became poorly understood
through the cumulative toll of patches, upgrades, and adap-
tations. Whatever the cause, when an “existing” system
graduates to the status of “legacy” system it has already
been observed to be difficult to maintain. Non-modularity
of reasoning about its behavior is a major reason for this.

5. Conclusion

Reverse engineering of large legacy systems is intractable
in the following sense: Given real legacy code, the time
required to show the validity of a proposed explanation for
why it exhibits any significant system-level behavior is at
least exponential in the size of the source code. This does
not mean that the task is impossible. It means that it is
prohibitively costly for large legacy systems.

One lesson from this should be that we need to put more
emphasis, not less, on careful engineering of new systems
[13]; and that this emphasis needs to focus (at least) on
creating systems that admit modular reasoning. There are
many good reasons to continue to work on reverse engi-
neering of legacy code — it is an exciting intellectual

challenge and a problem that sometimes has to be faced in
practice. But at the same time we need to be realistic about
what outcomes to expect. Researchers and developers, and
especially their sponsors and the customers buying their
wares, should not be disappointed that nothing seems to
work very well for large legacy systems.

Acknowledgment

Dean Allemang, B. Chandrasekaran, Steve Edwards, John
Hartman, Doug Kerr, Tim Long, Bill Ogden, Murali
Sitaraman, Neelam Soundararajan, Michael Stovsky,
Sergey Zhupanov, and Stu Zweben have provided helpful
insights and/or feedback on the ideas presented here. We
also gratefully acknowledge the support of the National
Science Foundation through grant CCR-9311702; and the
Advanced Research Projects Agency under ARPA contract
number F30602-93-C-0243, monitored by the USAF
Materiel Command, Rome Laboratories, ARPA order num-
ber A714.

Bibliography
[0] Andersen, H.C. The Emperor’s New Clothes: A
Fairy Tale, Addison-Wesley, Reading, MA, 1973.

(1]

Bennett, K. Legacy systems: coping with success.
IEEFE Software 12, 1 (Jan. 1995), 19-23.

[2] Biggerstaff, T.J., Mitbander, B.G., and Webster,
D.E. Program understanding and the concept
assignment problem. Comm. ACM 37, 5 (May

1994), 72-83.

Chandrasekaran, B., Goel, A.X., and Iwasaki, Y.
Functional representation as design rationale.
Computer 26, 1 (Jan. 1993), 48-56.

Cook, S.A. Soundness and completeness of an
axiom system for program verification. SIAM J.
Comp. 7, 1 (Feb. 1978), 70-90.

Ernst, G.W., Hookway, R.J., Menegay, J.A., and
Ogden, W.F. Modular verification of Ada generics.
Comp. Lang. 16, 3/4 (1991), 259-280.

[6] Ernst, G.W., Hookway, R.J., and Ogden, W.F.
Modular verification of data abstractions with shared
realizations. [EEE Trans. on Software Eng. 20, 4

(Apr. 1991), 288-307.

[71 Harms, D.E., and Weide, B.W. Copying and swap-
ping: influences on the design of reusable software
components. [EEE Trans. on Software Eng. 17, 5
(May 1991), 424-435.

[81 Hollingsworth, J.E. Software Component Design-

for-Reuse: A Language-Independent Discipline
Applied to Ada. Ph.D. dissertation, Dept. of Comp.
and Inf. Seci., Ohio State Univ., Columbus, OH, Aug.
1992; available from “ftp.cis.ohio-state.edu” in
“/pub/tech-re port/1993/TRO1-DIR/*”.

(9]

(10]

[11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

331

Hopkins, J.E., and Sitaraman, M. Software quality
is inversely proportional to potential local
verification effort. Proc. 6th Ann. Workshop on
Software Reuse, Owego, NY, Nov. 1993,

Leavens, G.T., and Weihl, W.E. Reasoning about
object-oriented programs that use subtypes. Proc.
OOPSLA ’90/SIGPLAN Notices 25, 10 (Oct. 1990),
212-223.

Liskov, B., and Guttag, J. Abstraction and Speci-
fication in Program Development. McGraw-Hill,
New York, 1986.

Littman, D.C., Pinto, J., Letovsky, S., and Soloway,
E. Mental models and software maintenance. In
Empirical Studies of Programmers, E. Soloway and
S. Iyengar, eds., Ablex, 1986, 80-98.

Neumann, P.G. Are dependable systems feasible?
Comm. ACM 36, 2 (Feb. 1993), 146.

Parnas, D.L., Madey, J., and Iglewski, M. Precise
documentation of well-structured programs. IEEE
Trans. on Software Eng. 20, 12 (Dec. 1994), 948 -
976.

Waters, R. C., and Chikovsky, E. Reverse engineer-
ing progress along many dimensions. Comm. ACM
37,5 (May 1994), 23-24.

Weber, F. Getting class correctness and system
correctness equivalent: how to get covariance right.
In Proc. TOOLS USA °92, R. Ege, M. Singh, and B.
Meyer, eds., Prentice-Hall, 1992.

Weide, B.W., Heym, W.D., and Ogden, W.F.
Procedure calls and local certifiability of component
correctness. Proc. 6th Ann. Workshop on Software
Reuse , Owego, NY, Nov. 1993,

Weide, B.W., and Hollingsworth, J.E., On Local
Certfiability of Software Components, tech. report
OSU-CISRC-1/94-TR04, Dept. of Comp. and Inf.
Sci., Ohio State Univ., Columbus, OH, Jan. 1994,
available from “ftp.cis.ohio-state.edu” in *“/pub/tech-
report/1994/TRO1.ps.gz”.

Weide, B.W., Heym, W.D., and Hollingsworth, J.E.,
Reverse Engineering of Legacy Code is Intractable,
tech. report OSU-CISRC-10/94-TRS55, Dept. of
Comp. and Inf. Sci., Ohio State Univ., Columbus,
OH, Oct. 1994; available from “ftp.cis.ohio-
state.edu” in “/pub/tech-report/1994/TR55.ps.gz”.

Wilde, N., Matthews, P., and Huitt, R. Maintaining
object-oriented software. IEEE Software 10, 1 (Jan.
1993), 75-80.

