
Reverse Engineering of Legacy Systems:

A Path Toward Success *

Alex Quilici

University of Hawaii at Manoa

Department of Electrical Engineering

2540 Dole St, Holmes 483

Honolulu, HI, 96822

Abstract

This paper addresses the question of whether the re-

verse engineering of legacy systems is doomed to fail-

ure. Our position is that the answer is highly depen-

dent on the specific goals of the reverse engineering

process. We argue that while most reverse engineer-

ing efforts may well fail to achieve the traditional

goal of automatically extracted complete specifica-

tions suitable for forward engineering, they are likely

to succeed on the more modest goal of automatically

extracting partial specifications that can augmented

by system-assisted human understanders.

1 Introduction

Is reverse engineering of legacy systems doomed to

failure? Answering this question requires a definition

of reverse engineering and its goals. A paraphrase of

the consensus definition of reverse engineering is [1]:

The process of deriving abstract formal

specifications from the source code of a

legacy system, where these specifications

can be used to forward engineer a new im-

plementation of that system.

There are several important assumptions underlying

this definition. One is that the process of deriving ab-

stract formal specifications is completely automatic.

* This work has been partially funded by US Air Force
Contract #l?30602-93-C-0257 as part of the Rome Labs KBSA

project.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ICSE ’95, Seattle, Washington USA
0 1995 ACM 0-89791 -708-119510004...$3.50

Another is that these specifications are at a suffi-

ciently abstract level so that the system can be imple-

mented in a new language, executed on a new archi-

tecture, or recoded in a substantially more maintain-

able way—not merely restructured. The last is that

the time and effort required to derive these specifica-

tions is less than forming the specifications without

reference to the existing code. The result is that, un-

der this definition, whether reverse engineering can

ever be successful boils down to a simple question: Is

it possible to automatically derive the necessary ab-

stract specifications in a cost-effective way that oper-

ates within a reasonable amount of time’?

The current state of the art in real-world reverse

engineering is far from this goal. Perhaps the closest

efforts are those using Reasoning System’s REFINE

[11, 12] to generate an augmented abstract syntax

tree (essentially a parse tree with additional data and

control flow information) and to apply transformation

rules that operate on this AST to generate a new

version of the original system. One such effort, for

example, used this approach to automatically divide

a large COBOL program into a number of individual

modules that grouped together related functionality

[8]. The AST for the original COBOL program can

be thought of as a slightly more abstract specification

of the program’s behavior than either the original or

the resulting code (since numerous implementations

can result in the same AST), and the application of

transformation rules to create new modules can be

thought of as a portion of the forward engineering of
a new system.

Unfortunately, this state of the art effort is far from

the goal of reverse engineering, which gives rise to the

question: How much of this gap can be closed? In this

paper we argue that, regardless of whether the stan-

dard goal of reverse engineering can be achieved, a

modified goal of reverse engineering is both attain-
able and worthwhile. In particular, the goal of re-

verse engineering should be to extract a knowledge

base describing a legacy system that can be used to

333

improve forward engineering—and not specifically to

abstract a complete set of formal specifications. In

addition, the process of extracting this information

should be assumed to combine both automation and

assistance—and not be assumed to be completely au-

tomated. Essentially, we are arguing for this revised

definition of successful reverse engineering:

The automated or assisted process of deriv-

ing a knowledge base describing a legacy sys-

tem from its source code, where this knowl-

edge base lessens the effort required to for-

ward engineer a new implementation of that

system.

Thus, under this definition, reverse engineering is

successful if the cost of extracting information from

a legacy system is less than the cost savings that

arise from having that information available to sup-
port forward engineering. The result is that there are

a variety of ways reverse engineering can be success-

ful: by automatically forming a partial set of formal

specifications, by automatically extracting a subset

of design elements implemented in a particular pro-

gram, by assisting in the formation of a complete set

of specifications, and so on.

Rather than focusing on whether it is theoretically

or practically possible to automatically extract com-

plete specifications from code, the real issue of in-

terest is in what information can be automatically

extracted from source code and how this information

can contribute to lessening the cost of forward engi-

neering.

2 What Can Be Automatically

Extracted

Whether it is possible to automatically extract for-

mal specifications from legacy systems is an open

question. However, numerous current research efforts

suggest that it is tractable to extract the equivalent

of partial specifications from code automatically, and

that this information can be cost-effectively used in

forward engineering.

One example is recent program understanding re-

search into how to extract design information at

various levels of abstraction [6, 10, 7, 14, 15, 5, 4]

These approaches generally match code patterns

(plans) against the code to recognize higher-level

abstract ions, such as implementations of domain-

independent data structures and algorithms [14,

3]. These abstractions are clearly useful for for-

ward engineering in that they are largely language-

independent, can often be replaced with prepackaged

verified or validated code, and so on. Similar ef-

forts have examined how to recognize implementa-

tions of domain-dependent abstractions [1O]. One ex-

ample is the abstraction of validating an input trans-

action. Recognizing abstractions such as this one

helps forward-engineering by determining the condi-

tions the existing system validates, which can serve

as the starting point when forming specifications for

the new system or can be used to see how well the

existing code corresponds to the new specifications.

All of these approaches to program understanding

face two key questions. Can they be used to extract a

complete hierarchical design from existing real-world

legacy systems? And do they scale?

The Completeness Question

Unfortunately, the answer to the first question is

“No”, at least for the standard paradigm of matching

entries in a library of plans against the source code.

The problem is that code is understood only when

it successfully matched against an entry in the plan

library. This implies that the library must contain all

possible plans in advance; however, there is always

some code that is idiosyncratic in nature and unlikely

to be present in the plan library [13]. That means the

pattern-matching approach is always doomed to in-

complete understanding of legacy systems.

Fortunately, this failing does not mean that reverse

engineering is therefore doomed as well. In particu-

lar, given a domain-independent plan library, exist-

ing program understanding algorithms are still poten-

tially useful for extracting domain-independent de-

sign information, such as which data structures are

being used. In addition, given a domain-specific plan

library (such as would be constructed to try to under-

stand a family of related transaction processing appli-

cations), these algorithms are also potentially useful

for extracting domain-dependent design information

from stereotypical domain-dependent code. The ex-

tracted design information can form a portion of the

initial design of the new version of the system to be

constructed.

Whether program understanding algorithms can

produce a useful, cost-effective partial understanding

of an existing legacy system is likely to depend on

how much of the code within the system is stereotyp-

ical rather than idiosyncratic—a question that can

only be answered empirically. On the bright side,

the cost of developing the portion of the the plan

library that may be necessary to recognize domain-

independent design elements in existing systems can

be amortized over an extremely large set of programs.

Similarly, the cost of developing a domain-dependent

334

plan library can be amortized over the collection of

applications in that domain. This suggests that while

complete abstract specifications are out of reach of

library-based program understanding algorithms, ex-

tracting partial specifications of significant portions

of existing systems may well be within reach.

The Tractability Question

The other question deals with tractability. At first

glance, the news appears to be bad. Most exist-

ing program understanding algorithms, such as those

that rely on flowgraph-matching, are NP-complete in

the worst case. The good news, however, is that em-

pirically they appear to have much better average

case performance, at least on the relatively small pro-

grams and libraries to which they have been applied

(around 1000 lines of code or so) [14]. In addition,

there have been recent attempts to explicitly augment

the plan library with search control information to re-

duce the amount of matching that must take place to

recognize programming plans, even in the presence

of a large plan library [10]. While this work is rela-

tively new, the initial performance results with this

approach have also been promising, although again,

only on textbook-sized COBOL programs.

The problem is that a successful program under-

standing algorithm must scale both with the size of

the program and the size of the library. There is

obviously a large difference in scale between a 1000-

line program and a 100,000-line program, and be-

tween a 100-plan library and a 10000-plan library.

But surprisingly, the success current program under-

standing algorithms have recently shown wit h 1000-

line programs and 100-plan libraries may well be close

to what’s necessary to understand much larger pro-

grams.

The scaling problems inherent in trying to extract

design information from large programs may be ad-

dressable by applying automatic modularization tech-

niques. In particular, if the programs to be under-

stood can be automatically modularized, the under-

standing algorithms can simply be run on the mod-

ules and then applied to understanding the connec-

tions between these modules. This greatly shrinks

the search space the understanding algorithm is re-

quired to examine to determine whether items in a

particular plan library are present.

Furthermore, some recent research into efficiently

determining whether high-level program elements

(such as a process table for a debugger) are likely

to be present, suggests a way out of the scaling prob-

lems that arise with large plan libraries [2]. These

approaches use indexing techniques, such as connec-

tionist networks, to suggest what high-level design el-

ements may be present in a given program—without

actually attempting to verify their presence. This al-

lows other program understanding algorithms to try

to verify their presence using only the portion of the

library that is likely to be relevant. Doing so has the

potential to greatly shrink the search space that the

program understander must traverse.

3 Cooperative Extraction

Given that pattern-based program understanding al-

gorithms are likely to be able to only partially under-

stand legacy systems, we are at best likely to obtain

a partial specification out of the automated program

understanding process (such as recognition of a sub-

set of the design elements present in the system). But

what can be done when the ext ratted information is

insufficient for forward engineering?

One approach to this problem that we have been

exploring is cooperative eztmzction of the remaining

specifications [9]. The idea is to provide intelligent

assistance to programmers who are attempting to un-

derstand the parts of the. legacy system that could

not be automatically understood. The vision is that

understanding becomes a task shared by automated

extraction tools and a set of programmers who are

examining the legacy system’s code.

In our version of this approach, we provide a single

knowledge base that captures all design information

extracted about the program—whether ‘by an auto-

mated program understander or by users examining

the code. This knowledge base is formally represented

so that it can be used to support forward engineering,

but is visually presented to users as a graph, whose

nodes represent design elements and are linked to the

various pieces of code that implement those design

elements. Users can visually examine this graph to

determine where various design elements are imple-

mented and to see the underlying relationships be-

tween various code segments. Users can also visually

edit this knowledge base to add new design elements

that they recognize in the code, and to link these el-

ements to the code fragments that implement them.

The key is to have the knowledge base contain-

ing what has been extracted about a given legacy

system accessible to those who are trying to extract

additional information about that system. In our ap-

proach, we provide users with the ability to ask a

variety of queries about the extracted design and its
relationship to the program. These queries include

questions about the conceptual function of any arbi-

trary code segment, about which portions of the code

335

are related in various ways to a particular design el-

ement, and about which parts of the system are not

currently understood.

There may well be other approaches and techniques

that better aid programmers in extracting design in-

formation and specifications from a legacy system.

And while we have used an initial prototype coop-

erative design extraction environment to extract the

conceptual objects and operations underlying a set

of textbook COBOL programs, it is an open ques-

tion how well this approach will scale up in practice

to real-world legacy systems and to extracting more

complete or complex information about the design

of the system. However, the notion of combining au-

tomated and assisted understanding does suggest one

way to potentially overcome the likely incompleteness

of automatically extracted specifications.

4 Conclusions

The old notion of reverse engineering as a process of

automatically deriving complete specifications of the

behavior of a legacy system may well be doomed to

failure. But we are not nearly as pessimistic about

reverse engineering if we relax the demands on au-

tomation to a partial understanding of the legacy sys-

tem and then provide tools that assist programmers

in completing this understanding. As a result, our

position is that reverse engineering of many legacy

systems is eventually doomed to success, not failure.

References

[1] R. Arnold, Soflwme Reenginee%g, IEEE Press,

1992.

[2] T.J. Biggerstaff, B.G. Mitbander, and D.E. Web-

ster, 1994. Program understanding and the concept

assignment problem. Communications of the ACM,

37(5) (May 1994), 72-82.

[3] R. Dekker and F. Ververs, Abstract Data Struc-

ture Recognition, In Proceedings of the Ninth

Knowledge-Based Software Engineering Confer-

ence. (September 1994), Monterey CA, 133–140.

[4] W.L. Johnson, Intention Based Diagnoais of

Novice Programming ETTOTS. Morgan Kaufman,

LOS Altos CA, 1986.

[6] W. Kozaczynski and J.Q. Ning, Automated Pro-

gram Understanding By Concept Recognition, Au-

tomated Software Engineering, l(l) (March 1994),

61-78.

[7] W. Kozaczynski, J.Q. Ning, and A. Engberts,

Program concept recognition and transformation.

Transactions on Software Engineering, 18(12),

(December 1992), 1065-1075.

[8] P. Newcomb and L. Markosian, Automating the

Modularization of Large COBOL Programs: Ap-

plication of an Enabling Technology for Reengi-

neering. In Proceedings of the Working Conference

on Reverse Engineering, Baltimore, MD, (May

1993), 222-230.

[9] A. Quilici and D.N. Chin, A cooperative pro-

gram understanding environment. In Proceedings

of the Ninth Knowledge-Based Software Engineer-

ing Conference. (September 1994), Monterey CA,

125–132.

[10] A. Quilici, A memory-based approach to recog-

nizing programming plans. Communications of the

ACM, 37(5) (May 1994), 84-93.

[11] Reasoning Systems, REFINE/COBOL User’s

Guide, 1992.

[12] Reasoning Systems, REFINE/COBOL Pro-

grammer’s Guide, 1992.

[13] E. Soloway and K. Erdlich, Empirical studies

of programming knowledge. IEEE Transactions on

Software Engineering, 10(5) (1984), 595-609.

[14] L.M. Wills, Automated Program Recognition by

Graph Parsing. Ph.D. Thesis, Technical Report

1358, MIT Artificial Intelligence Lab, Cambridge

MA, (September 1992).

[15] L.M. Wills, Automated program recognition:

a feasibility demonstration. Artificial Intelligence

45(1-2), (September 1990), 113-172.

[5] S. Letovsky, Plan Analysis of Programs. Ph.D.

Thesis, Yale University, New Haven CO, 1988.

336

