
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2009

Software reverse engineering education Software reverse engineering education

Teodoro Cipresso
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Cipresso, Teodoro, "Software reverse engineering education" (2009). Master's Theses. 3734.
DOI: https://doi.org/10.31979/etd.4ppy-2cjg
https://scholarworks.sjsu.edu/etd_theses/3734

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3734&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3734?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

SOFTWARE REVERSE ENGINEERING EDUCATION

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Teodoro Cipresso

August 2009

UMI Number: 1478574

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1478574
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

©2009

Teodoro Cipresso

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

SOFTWARE REVERSE ENGINEERING EDUCATION

by
Teodoro Cipresso

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

5~ '•(kkJ^ m
Jr. Mark Stamp, Department of Computer Science Date

S/zo/a?
Dr. David Taylor, Department of Computer Science

Dr. Robert Chun, Department of Computer Science

Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

SOFTWARE REVERSE ENGINEERING EDUCATION

by Teodoro Cipresso

Software Reverse Engineering (SRE) is the practice of analyzing a software

system, either in whole or in part, to extract design and implementation information. A

typical SRE scenario would involve a software module that has worked for years and

carries several rules of a business in its lines of code. Unfortunately the source code of

the application has been lost; what remains is "native" or "binary" code. Reverse

engineering skills are also used to detect and neutralize viruses and malware as well as to

protect intellectual property. It became frighteningly apparent during the Y2K crisis that

reverse engineering skills were not commonly held amongst programmers. Since that

time, much research has been undertaken to formalize the types of activities that fall into

the category of reverse engineering so that these skills can be taught to computer

programmers and testers. To help address the lack of software reverse engineering

education, several peer-reviewed articles on software reverse engineering, re-engineering,

reuse, maintenance, evolution, and security were gathered with the objective of

developing relevant, practical exercises for instructional purposes. The research revealed

that SRE is fairly well described and most of the related activities fall into one of two

categories: software development related and security related. Hands-on reverse

engineering exercises were developed in the spirit of these two categories with the goal of

providing a baseline education in reversing both Wintel machine code and Java bytecode.

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his enduring patience as I struggled to

flush out the details of this work. I would also like to thank my committee members, Dr.

David Taylor and Dr. Robert Chun, for their support in this effort.

Last but not least, I would like to thank my wife Karyn, who has encouraged me

throughout my graduate career to persevere through the rough patches, and my cat

Freddy, who always kept me company as I typed many suns to sleep.

v

Table of Contents

1 Introduction 1
2 Reverse Engineering in Software Development 3
3 Reverse Engineering in Software Security 6
4 Reversing and Patching Wintel Machine Code 9

4.1 Decompilation and Disassembly of Machine Code 11
4.2 Wintel Machine Code Reversing and Patching Exercise 14
4.3 Recommended Reversing Tool for the Wintel Exercise 15
4.4 Animated Solution to the Wintel Reversing Exercise 17

5 Reversing and Patching Java Bytecode 20
5.1 Decompiling and Disassembling Java Bytecode 21
5.2 Java Bytecode Reversing and Patching Exercise 25
5.3 Recommended Reversing Tool for the Java Exercise 26
5.4 Animated Solution to the Java Reversing Exercise 27

6 Basic Anti-Reversing Techniques 29
7 Applying Anti-Reversing Techniques to Wintel Machine Code 31

7.1 Eliminating Symbolic Information in Wintel Machine Code 31
7.2 Basic Obfuscation of Wintel Machine Code 35
7.3 Protecting Source Code Through Obfuscation 40
7.4 Advanced Obfuscation of Machine Code 42
7.5 Wintel Machine Code Anti-Reversing Exercise 44
7.6 Solution to the Wintel Anti-Reversing Exercise 44

7.6.1 Encryption of String Literals 45
7.6.2 Obfuscating the Numeric Representation of the Record Limit 47
7.6.3 Control Flow Obfuscation for the Record Limit Check 48
7.6.4 Analysis of the Control Flow Obfuscation Using Run Traces 53

8 Applying Anti-Reversing Techniques to Java Bytecode 56
8.1 Eliminating Symbolic Information in Java Bytecode 58
8.2 Preventing Decompilation of Java Bytecode 63
8.3 A Java Bytecode Code Anti-Reversing Exercise 68
8.4 Animated Solution to the Java Bytecode Anti-Reversing Exercise 69

9 Reengineering and Reuse of Legacy Software Applications 70
9.1 Legacy Software Reengineering and Reuse Exercise 84
9.2 Legacy Software Reengineering and Reuse Exercise Solution 86

10 Identifying, Monitoring, and Reporting Malware 98
10.1 Malware Identification and Monitoring Exercise 106
10.2 Malware Identification and Monitoring Exercise Solution 106

Conclusion 107
References 109

vi

List of Tables

Table 4.1 Result of decompiling HelloWorld.exe using Boomerang. 13

Table 4.2 Quick reference for panes in CPU window of OllyDbg. 16

Table 5.1 Source listing for ListArguments.java. 22

Table 5.2 Java bytecode contained in ListArguments.class. 23

Table 5.3 Jad decompilation of ListArguments.class. 24

Table 7.1 Debugging information inserted into machine code. 33

Table 7.2 Listing of VerifyPassword.cpp and disassembly ofVerifyPassword.exe. 36

Table 7.3 Simple substitution cipher used to protect string constants. 38

Table 7.4 VerifyPasswordObfuscated.cpp and corresponding disassembly. 39

Table 7.5 COBF obfuscation results for VerifyPassword.cpp. 41

Table 7.6 Encrypted strings are decrypted each time they are displayed. 45

Table 7.7 Using a function of the record limit to obfuscate the condition. 47

Table 7.8 Implementation of the control flow obfuscation in Fig. 7.3. 51

Table 7.9 Statistical data gathered for randomized control-flow obfuscation. 56

Table 8.1 Unobfuscated source listing of CheckLimitation.java. 60

Table 8.2 Jad decompilation of ProGuard obfuscated bytecode. 61

Table 8.3 Jad decompilation of SandMark (and ProGuard) obfuscated bytecode. 62

Table 8.4 Listing of DateTime.Java. 67

Table 8.5 Jad decompilation of DateTime.class obfuscated by Zelix Klassmaster. 68

Table 9.1 Sample business logic component to reuse and reengineer. 76

Table 9.2 Interface data structure SMPLCALC-INTERFACE in SMPLCALC.cpy. 86

Table 9.3 XML Schema generated the from COBOL data structure. 87

Table 9.4 Partial listing of SmplCalcJaxbMarshaller.java interaction with JAXB. 90

Table 9.5 Updates to JSimpleCalculator.java in support of JAXB marshalling. 91

Table 9.6 Example native method declaration for the JNI XML bridge. 92

Table 9.7 Example implementation of the Java to COBOL JNI XML bridge. 93

Table 9.8 Implementation of a COBOL XML layer to the legacy application 95

Table 9.9 Example run of the solution code with debug statements turned on. 96

vn

List of Figures

Figure 2.1 Development process for maintaining legacy software. 4

Figure 2.2 Development related software reverse engineering scenarios. 5

Figure 3.1 Security related software reverse engineering scenarios. 8

Figure 4.1 The five panes of the OllyDbg graphical workbench. 16

Figure 4.2 Sample slide from the machine code reversing animated tutorial. 19

Figure 5.1 Execution of Java bytecode versus machine code. 21

Figure 5.2 FrontEnd Plus workbench session for List Arguments, class. 27

Figure 7.1 Result of obfuscating all string literals in the program. 46

Figure 7.2 Record limit comperands are represented as exponents with a base of 2. 49

Figure 7.3 Obfuscated control flow logic for testing the password record limit. 51

Figure 7.4 Edit-distances between three run traces of the trial limitation check. 55

Figure 8.1 Usage of opaque predicates to prevent decompilation. 65

Figure 8.2 Sample slide from the Java antireversing animated tutorial. 70

Figure 9.1 Layers of a well-structured legacy software application. 73

Figure 9.2 Mapping legacy functional discriminators to an object-oriented design. 75

Figure 9.3 Example JCA implementation for accessing a legacy application. 79

Figure 9.4 Architecture for legacy application reengineering and reuse from Java. 83

Figure 9.5 Console-based Java interface to the legacy COBOL program. 89

Figure 10.1 Process Monitor session for the Password Vault application. 102

Figure 10.2 Example ThreatExpert report summary for submitted malware. 104

Figure 10.3 Console-based UI for the Alarm Clock example software Trojan. 105

Vlll

1 Introduction

From very early on in life we engage in constant investigation of existing things

to understand how and even why they work. The practice of Software Reverse

Engineering (SRE) calls upon this investigative nature when one needs to learn how and

why, often in the absence of adequate documentation, an existing piece of software—

helpful or malicious—works. The sections that follow cover the most popular uses of

SRE and, to some degree, the importance of imparting knowledge of them to those who

write, test, and maintain software. More formally, SRE can be described as the practice

of analyzing a software system to create abstractions that identify the individual

components and their dependencies, and, if possible, the overall system architecture [1],

[2]. Once the components and design of an existing system have been recovered, it

becomes possible to repair and even enhance them.

Events in recent history have caused SRE to become a very active area of

research. In the early nineties, the Y2K problem spurred the need for the development of

tools that could read large amounts of source or binary code for the 2-digit year

vulnerability [2]. Shortly after the preparation for the Y2K problem, in the mid to late

nineties, the adoption of the Internet by businesses and organizations brought about the

need to understand in-house legacy systems so that the information held within them

could be made available on the Web [3]. The desire for businesses to expand to the

Internet for what was promised to be limitless potential for new revenue caused the

creation of many Business to Consumer (B2C) web sites.

1

Today's technology is unfortunately tomorrow's legacy system. For example, the

Web 2.0 revolution sees the current crop of web sites as legacy Web applications

comprised of multiple HTML pages; Web 2.0 envisions sites where a user interacts with a

single dynamic page—rendering a user experience that is more like traditional desktop

applications [2]. Porting the current crop of legacy web sites to Web 2.0 will require

understanding the architecture and design of these legacy sites—again requiring reverse

engineering skills and tools.

At first glance, it may seem that the need for SRE can be lessened by simply

maintaining good documentation for all software that is written. While the presence of

that ideal would definitely decrease the need; it just has not become a reality. For

example, even a company that has brought software to market may no longer understand

it because the original designers and developers may have left, or components of the

software may have been acquired from a vendor who is no longer in business [1].

Going forward, the vision is to include SRE incrementally, as part of the normal

development, or "forward engineering" of software systems. At regular points during the

development cycle, code would be reversed to rediscover its design so that the

documentation can be updated. This would help avoid the typical situation where

detailed information about a software system such as its architecture, design constraints,

and trade-offs are found only in the memory of its developer [1].

2

2 Reverse Engineering in Software Development

While a great deal of software that has been written is no longer in use, a

considerable amount has survived for decades and continues to run the global economy.

The reality of the situation is that 70% of the source code in the entire world is written in

COBOL [3]. One would be hard-pressed these days to obtain an expert education in

legacy programming languages like COBOL, PL/I, and FORTRAN. Compounding the

situation is the fact that a great deal of legacy code is poorly designed and documented

[3]. [6] states that "COBOL programs are in use globally in governmental and military

agencies, in commercial enterprises, and on operating systems such as IBM's z/OS®,

Microsoft's Windows®, and the POSIX families (Unix/Linux etc.). In 1997, the Gartner

Group reported that 80% of the world's business ran on COBOL with over 200 billion

lines of code in existence and with an estimated 5 billion lines of new code annually."

Since it's cost-prohibitive to rip and replace billions of lines of legacy code, the only

reasonable alternative has been to maintain and evolve the code, often with the help of

concepts found in software reverse engineering. Fig. 2.1 illustrates a process a software

engineer might follow when maintaining legacy software systems. Whenever computer

scientists or software engineers are engaged with evolving an existing system, fifty to

ninety percent of the work effort is spent on program understanding [3]. Having

engineers spend such a large amount of their time attempting to understand a system

before making enhancements is not economically sustainable as a software system

continues to grow in size and complexity. To help lessen the cost of program

3

Software Module
Enhancement Request

Software
Engineer

Design
Recovery

No

Encapsulate
Binary and

Test

Patch
Binary and

Test

/ Source \
\ exists?/''

Yes

Edit,
Compile,
and Test

L

Deploy .

n
[Depl

^^mSm*! 3t*-^B"

<H|

111

Legacy
System

Figure 2.1. Development process for maintaining legacy software,

understanding, [3] advises that "practice with reverse engineering techniques improves

ability to understand a given system quickly and efficiently."

Even though several tools already exist to aid software engineers with the

program understanding process, the tools focus on transferring information about a

software system's design into the mind of the developer [1]. The expectation is that the

developer has enough skill to efficiently integrate the information into their own mental

model of the system's architecture. It's not likely that even the most sophisticated tools

can replace experience with building mental models of existing software; [4] states

"commercial reverse engineering tools produce various kinds of output, but software

engineers usually don't how to interpret and use these pictures and reports." The lack of

reverse engineering skills in most programmers is a serious risk to the long-term viability

of any organization that employs information technology. The problem of software

maintenance cannot be dispelled with some clever technique, [7] argues "re-engineering

4

code to create a system that will not need to be reverse engineered again in the future—is

presently unattainable."

According to [5], there are four software development related reverse engineering

scenarios; the scenarios cover a broad spectrum of activities that include software

maintenance, reuse, re-engineering, evolution, interoperability, and testing. Fig. 2.2

summarizes the software development related reverse engineering scenarios.

Achieving Interoperability lAilh
Proprietary Software

verification that Implementation
Matches Design

Development Related
Software

Reverse Engineering

Evaluating Software Quality
and Robustness

Legacy Software Maintenance,
Re-engineering and Evolution

Figure 2.2. Development related software reverse engineering scenarios.

The following are tasks one might perform in each of the reversing scenarios [5]:

> Achieving Interoperability with Proprietary Software: Develop applications or

device drivers that interoperate (use) proprietary libraries in operating systems or

applications.

> Verification that Implementation Matches Design: Verify that code produced

during the forward development process matches the envisioned design by

reversing the code back into an abstract design.

> Evaluating Software Quality and Robustness: Ensure the quality of software

before purchasing it by performing heuristic analysis of the binaries to check for

certain instruction sequences that appear in poor quality code.

> Legacy Software Maintenance, Re-engineering, and Evolution: Recover the

design of legacy software modules when source is not available to make possible

the maintenance, evolution, and reuse of the modules.

3 Reverse Engineering in Software Security

From the perspective of a software company, it is highly desirable that the

company's products are difficult to pirate and reverse engineer. Making software difficult

to reverse engineer seems to be in conflict with the idea of being able to recover the

software's design later on for maintenance and evolution. Therefore, software

manufacturers usually don't apply anti-reverse engineering transformations to software

binaries until it is packaged for shipment to customers. Software manufacturers will

typically only invest time in making software difficult to reverse engineer if there are

particularly interesting algorithms that make the product stand out from the competition.

Making software difficult to pirate or reverse engineer is often a moving target

and requires special skills and understanding on the part of the developer. Software

developers who are given the opportunity to practice anti-reversing techniques might be

in a better position to help their employer, or themselves, protect their intellectual

property. As [3] states, "to defeat a crook you have to think like one." By reverse

engineering viruses or other malicious software, programmers can learn their inner

6

workings and witness first-hand how vulnerabilities find their way into computer

programs. Reversing software that has been infected with a virus, is a technique used by

the developers of anti-virus products to identify and neutralize new viruses or understand

the behavior of malware.

Programming languages like Java, which do not require computer programmers to

manage low-level system details, have become ubiquitous. As a result, computer

programmers have increasingly lost touch with what happens in a system during

execution of programs. [3] suggests that programmers can gain a better and deeper

understanding of software and hardware through learning reverse engineering concepts.

Hackers and crackers have been quite vocal and active in proving that they possess a

deeper understanding of low-level system details than their professional counterparts [3].

According to [5], there are four software security related reverse engineering

scenarios. Similar to development related reverse engineering—the scenarios cover a

broad spectrum of activities: ensuring that software is safe to deploy and use, protecting

clever algorithms or business processes, preventing pirating of software and digital media

such as music, movies, and books—and making sure that cryptographic algorithms are

not vulnerable to attacks. Fig. 3.1 summarizes the software security related reverse

engineering scenarios. The following are tasks one might perform in each of the

reversing scenarios [5]:

> Detecting and Neutralizing Viruses and Malware: Detect, analyze, or neutralize

(clean) malware, viruses, spyware, and adware.

7

Testing Cryptographic Algorithms for Weaknesses: Test the level of data security

provided by a given cryptographic algorithm by analyzing it for weaknesses.

Testing DRM or License Protection (anti-reversing): Protect software and media

digital-rights through application and testing of anti-reversing techniques.

Auditing the Security of Program Binaries: Audit a program for security

vulnerabilities without access to the source code by scanning instruction

sequences for potential exploits.

Detecting and Neutralizing Viruses
and Malware

Testing Cryptogenic Algorithms
for Weaknesses

i
Security Related

Software
Reverse Engineering

Testing DRM or License Protection
^nti-re versing)

Auditing the Security of Program
Binaries (lAithout source code)

Figure 3.1. Security related software reverse engineering scenarios.

8

4 Reversing and Patching Wintel Machine Code

The executable representation of software, otherwise known as machine code, is

typically the result of translating a program written in a high-level language, using a

compiler, to an object file, a file which contains platform-specific machine instructions.

The object file is made executable using linker, a tool which resolves the external

dependencies that the object file has, such as operating system libraries. In contrast to

high-level languages, there are low-level languages which are still considered to be high-

level by a computer's CPU because the language syntax is still a textual or mnemonic

abstraction of the processor's instruction set. For example, assembly language, a

language that uses helpful mnemonics to represent machine instructions, still must be

translated to an object file and made executable by a linker. However the translation

from assembly code to machine code is done by an assembler instead of a compiler—

reflecting the closeness of the assembly language's syntax to actual machine code.

The reason why compilers translate programs coded in high-level and low-level

languages to machine code is three-fold: CPUs only understand machine instructions,

having a CPU dynamically translate higher-level language statements to machine

instructions would consume significant, additional CPU time, and (3) a CPU that could

dynamically translate multiple high-level languages to machine code would be extremely

complex, expensive, and cumbersome to maintain—imagine having to update the

firmware in your microprocessor every time a bug is fixed or a feature is added to the

C++ language!

9

To relieve a high-level language compiler from the difficult task of generating

machine instructions, some compilers do not generate machine code directly, instead they

generate code in a low-level language such as assembly [8]. This allows for a separation

of concerns where the compiler doesn't have to know how to encode and format machine

instructions for every target platform or processor—it can instead just concentrate on

generating valid assembly code for an assembler on the target platform. Some compilers,

such as the C and C++ compilers in the GNU Compiler Collection (GCC), have the

option to output the intermediate assembly code that the compiler would otherwise feed

to the assembler—allowing advanced programmers to tweak the code [9]. Therefore the

C and C++ compilers in GCC are examples of compilers that translate high-level

language programs to assembly code instead of machine code; they rely on an assembler

to translate their output into instructions the target processor can understand. [9] outlines

the compilation process undertaken by GCC compiler to render an executable file is as

follows:

> Preprocessing: Expand macros in the high-level language source file.

> Compilation: Translate the high-level source code to assembly language.

> Assembly: Translate assembly language to object code (machine code).

> Linking (Create the final executable):

> Statically or dynamically link together the object code with the object code

of the programs and libraries it depends on.

10

> Establish initial relative addresses for the variables, constants, and entry

points in the object code.

4.1 Decompilation and Disassembly of Machine Code

Having an understanding of how high-level language programs become

executables can be extremely helpful when attempting to reverse engineer machine code.

Most software tools that assist in reversing executables work by translating the machine

code back into assembly language. This is possible because there exists a one-to-one

mapping from each assembly language instruction to a machine instruction [10]. A tool

that translates machine code back into assembly language is called a disassembler. From

a reverse engineer's perspective the next obvious step would be to translate assembly

language back to a high-level language, where it would be much less difficult to read,

understand, and alter the program. Unfortunately, this is an extremely difficult task for

any tool because once high-level language source code is compiled down to machine

code, a great deal of information is lost. For example, one cannot tell by looking at the

machine code which high-level language (if any) the machine code originated from.

Perhaps knowing a particular quirk about a compiler might help a reverse engineer

identify some machine code that it had a hand in creating, but this is not a reliable

strategy.

The greatest difficulty in reverse engineering machine code comes from the lack

of adequate decompilers—tools that can generate equivalent high-level language source

code from machine code. The paper [5] argues that it should be possible to create good

11

decompilers for binary executables, but recognizes that other experts disagree—raising

the point that some information is "irretrievably lost during the compilation process."

Boomerang is a well-known open-source decompiler project that seeks to one day be able

to decompile machine code to high-level language source code with respectable results

[11]. For those reverse engineers interested in recovering the source code of a program,

decompilation may not offer much hope because as [11] states "a general decompiler

does not attempt to reverse every action of the compiler, rather it transforms the input

program repeatedly until the result is high level source code. It therefore won't recreate

the original source file; probably nothing like it."

To get a sense of the effectiveness of Boomerang as a reversing tool, a simple

program, HelloWorld.c was compiled and linked using the GNU C++ compiler for

Microsoft Windows® and then decompiled using Boomerang. The C code generated by

the Boomerang decompiler when given HelloWorld.exe as input was quite disappointing:

the generated code looked like a hybrid of C and assembly language, had countless

syntax errors, and ultimately bore no resemblance to the original program. Table 4.1

contains the source of HelloWorld.c and some of the code generated by Boomerang.

Incidentally, the Boomerang decompiler was unable to produce any output when

HelloWorld.exe, was built using Microsoft's Visual C++ 2008 edition compiler.

The full length of the C code generated by Boomerang for the HelloWorld.exe

program contained 180 lines of confusing, nonsensical control structures and function

calls to undefined methods. It is surprising to see such a poor decompilation result, but as

12

Table 4.1. Result of decompiling HelloWorld.exe using Boomerang.

HelloWorld.c:

01
02
03
04
05
06

#include <stdio.h>
int main(int argc, char *argv[])

{
printf("Hello Boomerang World\n");
return 0;

Boomerang decompilation of HelloWorld.exe (abbreviated):

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

22:

union { size32[] x83; unsigned int x84; } globallO;
size32 global3 = -1;// 4 bytes

// address: 0x401280
void _start()

{
set__app_type () ;

procl();

}

// address: 0x401150
void procl()

{
size32 eax; // r24
size32 ebp; // r29
size32 ebx; // r27

int ecx; // r25
int edx; // r2 6
int esp; // r28
SetUnhandledExceptionFilter();
proc5(pc, pc, 0x401000, ebx, ebp, eax, ecx, edx, ebx,
esp - 4, SUBFLAGS32(esp - 44, 4, esp - 48), esp - 48 == 0,
(unsigned int) (esp - 44) < 4);

[11] states: "Machine code decompilation, unlike Java/.NET decompilation, is still a very

immature technology." To ensure that decompilation was given a fair trial, another

decompiler was tried on the HelloWorld.exe executable. The Reversing Engineering

Compiler or REC is both a compiler and a decompiler that claims to be able to produce a

"C-like" representation of machine code [12]. Unfortunately, the results of the

decompilation using REC were similar to that of Boomerang. Based on the current state

13

of decompilation technology for machine code, using a decompiler to recover the high-

level language source of an executable doesn't seem feasible; however, because of the

one-to-one correspondence between machine code and assembly language statements

[10], we can obtain a low-level language representation. Fortunately there are graphical

tools available that not only include a disassembler, a tool which generates assembly

language from machine code, but also allow for debugging and altering the machine code

during execution.

4.2 Wintel Machine Code Reversing and Patching Exercise

Imagine that you have just implemented a C/C++ version of a Windows® 32-bit

console application called "Password Vault" that helps computer users create and manage

their passwords in a secure and convenient way. Before releasing a limited trial version

of the application on your company's Web site, you would like to understand how

difficult it would be for a reverse engineer to circumvent a limitation in the trial version

that exists to encourage purchases of the full version; the trial version of the application

limits the number of password records a user may create to five.

The C++ version of the Password Vault application (included with this text) was

developed to provide a non-trivial application for reversing exercises without the myriad

of legal concerns involved with reverse engineering software owned by others. The

Password Vault application employs 256-bit AES encryption, using the free

cryptographic library crypto++ [17], to securely store passwords for multiple users—

each in separate, encrypted XML files. By default, the Makefile that is used to build the

14

Password Vault application defines a constant named "TRIALVERSION" which causes

the resulting executable to limit the number of password records a user may create to

only five, using conditional compilation. This limitation is very similar to limitations

found in many shareware and trialware applications that are available on the Internet.

4.3 Recommended Reversing Tool for the Wintel Exercise

OllyDbg is a shareware interactive machine code debugger and disassembler for

Microsoft Windows® [13]. The tool has an emphasis on machine code analysis which

makes it particularly helpful in cases where the source code for the target program is

unavailable [13]. Fig. 4.1 illustrates the OllyDbg graphical workbench. OllyDbg

operates as follows: the tool will disassemble a binary executable, generate assembly

language instructions from machine code instructions, and perform some heuristic

analysis to identify individual functions (methods) and loops. OllyDbg can open an

executable directly, or attach to one that is already running. The OllyDbg workbench can

display several different windows which are made visible by selecting them on the View

menu bar item. The CPU window, shown in Fig. 4.1, is the default window that is

displayed when the OllyDbg workbench is started. Table 4.2 lists the panes of the CPU

window along with their respective capabilities; the contents of the table are adapted

from the online documentation provided by [13] and experience with the tool.

15

Disassembler
\ ..__.

Registers
- J _ ...

Oily Dbg • PassworriVault.exe - [CPU - main thread, module Password] F M ! 3 t 3

|C | File View\Oebug Plugins Options Window Help

6jj«lix mLMMMM
liMMfe!:M
B84012S1
00481283
004S1286
0040128D
00401293
00401298
004EU299
004012R9
004012fil
00401203

EBP=3022FFF0

* ss
. 89E5
. 83EC 08
. C70424 010000
. FF1S 9892S900
. E8 B8FEFFFF
. 90
. 8DB426 000000
. SS
. 89ES
. 83EC 08

PUSH EBP
now EBP,ESP
SUB ESP 8
MOU DWORD PTR SS:[ESP],1
CALL DWORD PTR DS: [<&msucrt._
CALL Passuord.00401150
NOP
LEfl ESI,DWORD PTR DSlCESI]
PUSH EBP
MOU EBP,ESP
SUB ESP, 8
MOU niiinRn PTB <W. T F ^ P I ?

EBX 80000000
ECX 0022FFB0
EDX 7C90E4F4 rv
EBX 7FFDDB00
ESP 6022FFC4
EBP S022FFF0
ESI FFFFFFFF
EDI 7C910208 n
EIP 00401280 P
C 0 ES 8023 3
P 1 CS 001B 3

i! SSjafiS

Dump Information Stack

Figure 4.1. The five panes of the OllyDbg graphical workbench.

Table 4.2. Quick reference for panes in CPU window of OllyDbg.

Pane Capabilities

Disassembler > Edit, debug, test, and patch a binary executable using actions
available on a popup menu.

> Patch an executable by copying edits to the disassembly back to
the binary.

Dump > Display the contents of memory or a file in one of 7 predefined
formats: byte, text, integer, float, address, disassembly, or PE
Header.

> Set memory breakpoints (triggered when a particular memory
location is read from or written to).

> Locate references to data in the disassembly (executable code).

Information > Decode and resolve the arguments of the currently selected
assembly instruction in the Disassembler pane.

> Modify the value of register arguments.

16

> View memory locations referenced by each argument in either the
Disassembler of Dump panes.

Registers > Decodes and displays the values of the CPU and FPU (Floating-
Point Unit) registers for the currently executing thread.

> Floating point register decoding can be configured for MMX
(Intel) or 3DNow! (AMD) multimedia extensions.

> Modify the value of CPU registers.

Stack > Display the stack of the currently executing thread.

> Trace stack frames. In general, stack frames are used to:

• Restore the state of registers and memory on return from a call
statement.

• Allocate storage for the local variables, parameters, and return
value of the called subroutine.

• Provide a return address.

4.4 Animated Solution to the Wintel Reversing Exercise

Using OllyDbg, one can successfully reverse engineer a non-trivial Windows®

application like Password Vault, and make permanent changes to the behavior of the

executable. The purpose of placing a trial limitation in the Password Vault application is

to provide a concrete objective for reverse engineering the application: disable or relax

the trial limitation. Of course the goal here is not teach how to avoid paying for software,

but rather to see oneself in the role of a tester, a tester who is evaluating how difficult it

would be for reverse engineer to circumvent the trial limitation. This is a fairly relevant

exercise to go through for any individual or software company that plans to provide trial

versions of their software for download on the Internet. In later sections, we discuss anti-

reversing techniques, which can significantly increase the difficulty a reverse engineer

will encounter when reversing an application.

17

For instructional purposes, an animated tutorial that demonstrates the complete

end-to-end reverse engineering of the C/C++ Password Vault application was created

using Qarbon Viewlet Builder and can be viewed using Macromedia Flash Player. The

tutorial begins with the Password Vault application and OllyDbg already installed on a

Windows® XP machine. Fig. 4.2 contains an example slide from the animated tutorial.

The animated tutorial, source, and installer for the machine code version of Password

Vault can be downloaded from the following locations:

> Wintel Reversing & Patching Animated Solution:

http://reversingproject.info/repository.php?fileID=4_l_l

> Password Vault C/C+ + Source code:

http://reversingproject.info/repository.php?filelD=4_l _2

> Password Vault C/C++ Windows® installer:

http://reversingproject.info/repository.php?filelD=4_l_3

Begin viewing the animated tutorial by extracting

passwordjvault_cpp _reversing_exercise.zip to a local directory and either running

password_vault_cpp_reversing_exercise.exe which should launch the standalone version

of Macromedia Flash Player, or by opening the file

passwordjvault_cpp_reversing_exercise_yiewlet._swf.html in a Web browser.

18

http://reversingproject.info/repository.php?fileID=4_l_l
http://reversingproject.info/repository.php?filelD=4_l
http://reversingproject.info/repository.php?filelD=4_l_3

I OlIvDbg - PasswordVault.e - - - -e - [Dump - Password: rdala 0055D000 00590FFF)

[p j File View Debug Plugins Options Window Help

|M««|X| VJJ|J *||_*|| £!|1H ̂ 1 +& JJ :E]H[T | "W|H|C| /
;8aS£bD@0|7B 2P. 7D 00 2B 2D 2D 2D-2D 2D 2D 2D-2D 2D 2D 2D
• j j f sc .cnn in l i n •sn ^ n ^ n -?n •sn ? n ?n ? n 7 n 5 n ?n ?n ?n ?n -pn

i

a
la

c
0
0

"YJ>~Tr™"_i____r_r

J9

The Dump window allows for searching through
the data and setting a breakpoint that is
triggered when data beginning at a specified
address is read or modified.

OBSSITRJB
0 0 = b C H O
Q85ED120
8 0 i S L l : O
8 8 5 5 0 1 4 0

: (305501 £"0
: 0 0 5 5 0 1 6 0
: 8 8 5 5 D 1 7 8
•80S5D130
•O055D138
0 0 b 5 D l P 8

' C1055C1B0
.6855D3C0

86?5D1D0
8 0 5 5 0 i E O
eSE^DlFO

, 00550JO0
, 0G5SD218

GO5SD220
O05SD2 30
8 8 5 5 0 2 4 0
0 0 5 5 0 2 9 ?
88SSD260
SOtEDl^O
8«5502 f :n
0 0 E ^ : J : : : < O
0855D2R9

1O055D2BB
.0O5SD2Ce
i OO55D2D0

0055D2E0
,09S50ZFO

0 8 5 5 0 : 0 0
0 8 5 5 ? ^ 1 0
88SSD320
0055O3EO
0 8 5 5 0 3 4 8
on^DBse
GQSSCSuB
O u S S O ? ^

1 /4 w idu aj M m w m. AI W W & fa)- & /A MI 63 74 3 f l 20 74 6 5 6F 6416F 72 6F 40 72 65 76 65
72 7 3 69 6E 67 7 0 7 2 6 F ; 6 f l 6 5 6 3 74 2E 69 6E 66
6F 2 6 20 20 28 2 0 2 0 2 9 ; 7 C 9 0 0 0 00 7C 20 20 41
45 5 3 20 32 35 3 6 2D 4 2 : 6 9 74 20 45 6E 63 72 79
70 7 4 69 6 F : 6 E 2 9 7 5 7 3 ! 6 9 6E 6 7 29 4 3 72 79 78
74 6F 2B 28 2@ 3 5 2E 3512E 3 2 20 2 0 ; 7 C 00 28 0 0
29 2 0 00 43 68 6 1 6E 6 7 ; 6 5 20 74 6 8 , 6 5 20 56 61
75 6C 74 2 0 ! 5 0 6 1 7 3 73 77 6F 7 2 6 4 ; 0 0 43 7 2 6 5
61 7 4 6 5 2 9 1 6 1 2 0 5 0 6 1 - 73 73 7 7 6 F : 7 2 6 4 2 6 5 2
65 6 3 6F 7 2 64 0 0 0 0 09 54 68 6 5 2 0 ; 6 3 68 6 1 72
61 6 3 74 65 i 72 7 3 2 0 27 30 20 72 65 74 75 7 2 6E
20 2 7 2C 2 0 27 2 2 2 7 2C 28 27 2F 2 7 , 2 C 29 27 3C
27 2C 20 61 6E 6 4 2 0 2 7 ; 3E 27 2 0 6 1 : 72 65 2 0 6E
6F 74 29 61 6C 6C 6F 77 : 65 6 4 2 0 6 9 ; 6 E 29 7 2 6 5
63 6F 72 64 28 6 4 61 7 4 ! 6 1 2E 0 9 44 6 5 6C 6 5 74
65 2 0 61 2 9 50 6 1 7 3 7 3 1 7 7 6F 72 64 2 0 52 6 5 6 3
6F 7 2 64 8 0 54 6 8 6 5 2 9 ! 6 4 65 73 6 3 i 7 2 69 7 0 74
69 6F 6E 2 9 77 6 1 7 3 20 ! 73 65 74 20 s 74 6F 2 0 22
?B 2R 7D 2 2 2E 0 0 4 4 69 73 70 6C 61 i 79 29 5 0 61
73 7 3 77 6F 72 6 4 2 8 52 65 6 3 6F 72 6 4 73 0 0 45
64 6 9 74 2 0 61 2 8 5 0 61 73 73 77 6F ; 72 64 2 0 5 2
65 6 3 6F 72 64 0 9 5B 45 72 72 6F 7 2 ' 5 D 29 0 0 90
41 6E 29 6 5 78 6 9 7 3 7 4 : 6 9 6E 67 2 0 ; 7 0 61 7 3 73
77 6F 72 64 20 76 6 1 7 5 ! 6 C 74 20 6 6 . 6 F 72 2 0 74
68 6 5 29 73 70 6S 6 3 6 9 ! 6 6 69 65 6 4 ; 2 0 75 7 3 65
72 6E 61 60 i 65 2 0 2 2 7 E ! 2 f l 7D 22 2 9 ; 7 7 61 7 3 29
6E 6F 74 2 0 6 6 6F 7 5 6E! 64 2D 2D 61s 73 73 7 5 6D
69 6E 67 2 0 6E 6 5 7 7 20 76 61 75 6 C ! 7 4 2E 8 8 89
54 6 8 65 2 0 73 70 6 5 63 69 66 69 6 5 , 6 4 20 6 3 75
72 7 2 65 6E 74 20 7 6 61 75 6C 74 2 0 ; 7 0 61 7 3 73
77 6F 72 6 4 20 65 6E 74 65 72 65 64 28 69 7 3 29
69 6E 63 6F 72 72 6 5 63 74 2E 29 59 72 6F 6 7 72
61 6D 20 77 69 6C 6C 2 0 ! 6 E 6F 77 2 9 ^ 6 5 78 6 9 74
29 ?? 69 7 4 ! 6 8 6F 7 5 7 4 ! 2 9 73 61 76 69 6E 6 7 29
66 6F 72 2 0 ^ 7 3 61 6 6 65 ! 74 79 2E 0 6 ; 5 B 49 6E 66
6F SO 20 9 9 ! 4 1 6E 2 0 6 9 L 6 E 76 61 6 C ! 6 9 64 2 0 6D
65 6E 75 2 9 ! 6 F 70 7 4 6 9 : 6 F 6E 29 6 E ! 7 5 6D 6 2 65
7 2 2 0 7 7 6 1 7 3 2 0 7 3 7 9 6 5 6 3 6 9 6 6 6 9 6 5 6 4 2E
90 5 4 68 6 5 ; 2 0 6E 6 1 6D 65 20 77 6 1 ; 7 3 20 7 3 65
tA t<> -7A fiC -Sffl 'il 7D "51-1 7n ->-3 1C Cta • AC CC It* -Vi

x y ; . . . ; i o n

-
1

e)

C
IS
• i
fca

c t : t e o d o r o @ r e v e
r s i n g p r o j e c t . i n f
0 I . . . ! fi
ES 2 5 6 - B i t E n c r y
Dt Ion u s i n g C r y p
t o + + 5 . 5 . 2 ! . (.
) .Change t h e U a

u l t P a s s w o r d . C r e
a t e a P a s s w o r d R

e c o r d . . . T h e c h a r
a c t e r s ' : r e t u r n

' , a n d ' > ' a r e n
o t a l l o w e d in r e
c o r d d a t a . . D e l e t
e a P a s s w o r d Rec
o r d . T h e d e - s c r i p t
i on was s e t t o "
{ # > " . . D i s p l a y Pa
s s w o r d R e c o r d s . E
d i t a P a s s w o r d R
e c o r d . [E r r o r] . .
fin en i s t i n g p a s s
w o r d v a u I t f o r t
he s p e c i f Led use
rnaroe " < # > " was
n o t f o u n d — a s s u c i
i n g new vau i t . . .
The s p e c i f i e d CM
r r e n t v a u l t p a s s
w o r d e n t e r e d i s
i n c o r r e c t . P r o g r
an u11L now en i t

w i t h o u t s a v i n g
f o r s a f e t y . . [I n f
0] .On i n v a t i d n
enu o p t i on nunbe
r was s p e c i f l e d .
. T h e nacie was se

j / ^achedpracesspaused^ r to l .D l ^ t ^ .Pp in t ' » 1"_ ; • • . - ;_ .';-

H H Q
klfii*]

JC]BJR]...|S| m a ?] i

Backup •
„,,'„/

Search foi "ST"

So to address Dif*-G

* Hex •

Tex* •

i l
3

1
y- * v

Use the context
menu to begin
a search.

Shrei <>V. J

tons •
Float •

Disassemble

Special •

Appearance *•

x -,". ':;-- '-• ' . " . ':'. " ' * - " a •.;• J ' -J Paused

Figure 4.2. Sample slide from the machine code reversing animated tutorial.

19

5 Reversing and Patching Java Bytecode

Applications written in Java are generally well-suited to being reverse engineered.

To understand why, it's important to understand the difference between machine code and

Java bytecode (Fig. 5.1 illustrates the execution of Java bytecode versus machine code):

> Machine code: "Machine code or machine language is a system of instructions

and data executed directly by a computer's central processing unit" [14]. Machine

code contains the platform-specific machine instructions to execute on the target

processor.

> Java bytecode: "Bytecode is the intermediate representation of Java programs just

as assembler is the intermediate representation of C or C++ programs" [15]. Java

bytecode contains platform-independent instructions that are translated to

platform-specific instructions by a Java Virtual Machine.

In Section 4, an attempt to recover the source of a simple "Hello World" C++ application

was unsuccessful when executables built using two different compilers were given as

input to the Boomerang decompiler. Much more positive results can be achieved for Java

bytecode because of its platform-independent design and high-level representation. On

Windows®, machine code is typically stored in files with the extensions *.exe, *.dll; the

file extensions for machine code vary per operating system. This is not the case with

Java bytecode as it is always stored in files that have a * class extension. Related Java

classes, such as those for an application or class library, are often bundled together in an

archive file with a *.jar extension. The Java Language Specification allows at most one

20

top-level public class to be defined per *.java source file and requires that the bytecode

be stored in a file with whose name matches the pattern TopLevelClassName.class.

Java
bytecode

Machine instruction

JVM instruction

Java Virtual
Machine (JVM)

SSHilBH

Machine
code

CPU

Figure 5.1. Execution of Java bytecode versus machine code.

5.1 Decompiling and Disassembling Java Bytecode

To demonstrate how much more feasible it is to recover Java source code from

Java bytecode than it is to recover C/C++ code from machine code, we decompile the

bytecode for the program List Arguments.Java using Jad, a Java decompiler which can be

found here [16]; we then compare the generated Java source with the original. Before

performing the decompilation we peek at the bytecode usingy'avap to get an idea of how

much information survives the translation from high-level Java source to the intermediate

format of Java bytecode. Table 5.1 contains the source code for List Arguments.Java, a

simple Java program that echoes each argument passed on the command-line to standard

output.

21

Table 5.1. Source listing for ListArguments.java.

01
02
03
04
05
06
07
08
09

package info.reversingproject.listarguments;

public class ListArguments {
public static void main(String[] arguments){

for (int i = 0; i < arguments.length; i++) {
System.out.println("Argument[" + i + "] : " + arguments[i])

Bytecode is stored in a binary format that is not human-readable and therefore

must be "disassembled" in order to be read. Recall that the result of disassembling

machine code is assembly language that can be converted back into machine code using

an assembler; unfortunately, the same does not hold for disassembling Java bytecode.

Sun Microsystem's Java Development Toolkit (JDK) comes with javap a command-line

tool for disassembling Java bytecode; to say that javap "disassembles" bytecode is a bit

of a misnomer since the output of javap is unstructured text which cannot be converted

back into bytecode. The output of javap is nonetheless useful as a debugging and

performance tuning aid since one can see which JVM instructions are generated from

high-level Java language statements.

Table 5.2 lists the Java bytecode for the main method of ListArguments class;

notice that the fully qualified name of each method invoked by the bytecode is preserved.

It may seem curious that while ListArguments.java contains no references to the class

java.lang.StringBuilder, there are many references to it in the bytecode; this is because

the use of the "+" operator to concatenate strings is a convenience offered by the Java

language that has no direct representation in bytecode. To perform the concatenation, the

22

bytecode creates a new instance of the StringBuilder class and invokes its append method

for each occurrence of the "+" operator in the original Java source code (there are three).

A loss of information has indeed occurred, but we'll see that it's still possible to generate

Java source code equivalent to the original in function, but not in syntax.

Table 5.2. Java bytecode contained in ListArguments.class.

0
1
2
3
4
5
8
i:
11

11
IE
2(
2:
2i-

2"
25
3:
3:
3̂
3f
31
4:
4̂
4'
5(

iconst 0
istore 1
iload 1
aload 0
arraylength
if icmpge
getstatic

.: new #3;
1: dup
3: invokespecial
3: ldc #5;
): invokevirtual
1: iload 1
:: invokevirtual
7: ldc #8;
3: invokevirtual
>: aload 0
1: iload_l

:: aaload
5: invokevirtual
1: invokevirtual
L: invokevirtual
1: iinc 1, 1
7: goto 2
): return

50
#2; // java/lang/System.out

// java/lang/StringBuilder

#4; // java/lang/StringBuilder.init
// "Argument["

#6; // java/lang/StringBuilder.append

#7; // java/lang/StringBuilder
// "] :"

#6; // java/lang/StringBuilder.append

#6; // java/lang/StringBuilder.append
#9; // java/lang/StringBuilder.toString
#10; // java/io/PrintStream.println

Table 5.3 lists the result of decompiling ListArguments.class using Jad; while the code is

different from the original List Arguments.Java program, it is functionally equivalent and

syntactically correct, which is a much better result than that seen earlier with decompiling

machine code.

23

Table 5.3. Jad decompilation of ListArguments.class.

01
02
03
04
05
06
07
08
09
10
11
12: }

package info.reversingproject.listarguments;
import Java.io.PrintStream;

public class ListArguments
{
public static void main(String args[])
{
for (int i = 0; i < args.length; i++)
System.out.printIn((new StringBuilder()).append("Argument[")
.append(i) .append("] :") .append(args[i]) .toString ());

An advanced programmer who is fluent in the Java Virtual Machine specification

could use a hex editor or a program to modify Java bytecode directly, but this is similar to

editing machine code directly, which is error-prone and difficult. In Section 4, which

covered reversing and patching of machine code, it was determined through discussion

and an animated tutorial that one should work with disassembly to make changes to a

binary executable. However, the result of disassembling Java bytecode is a pseudo-

assembly language, a language that cannot be compiled or assembled but serves to

provide a more abstract, readable representation of the bytecode. Being that directly

editing bytecode is difficult, and that disassembling bytecode results in pseudo-assembly

which cannot be compiled, it would seem that losing Java source code is more dire of a

situation than losing C/C++ source code, but of course this is not the case because, as

we've seen using Jad, Java bytecode can be successfully decompiled to equivalent Java

source code.

24

5.2 Java Bytecode Reversing and Patching Exercise

This section introduces an exercise that is the Java Bytecode equivalent of the

exercise given in Section 4.2 for Wintel machine code. Imagine that you have just

implemented a Java version of a console application called "Password Vault" that helps

computer users create and manage their passwords in a secure and convenient way.

Before releasing a limited trial version of the application on your company's Web site,

you would like to understand how difficult it would be for a reverse engineer to

circumvent a limitation in the trial version that exists to encourage purchases of the full

version; the trial version of the application limits the number of password records a user

may create to five.

The Java version of the Password Vault application (included with this text) was

developed to provide a non-trivial application for reversing exercises without the myriad

of legal concerns involved with reverse engineering software owned by others. The Java

version of the Password Vault application employs 128-bit AES encryption, using Sun's

Java Cryptography Extensions (JCE), to securely store passwords for multiple users—

each in separate, encrypted XML files.

25

5.3 Recommended Reversing Tool for the Java Exercise

If using Jad from the command-line doesn't sound appealing there is a freeware

graphical tool built upon Jad called FrontEnd Plus that provides a simple workbench for

decompiling classes and browsing the results [16]; it also has a convenient batch mode

where multiple Java class files can be decompiled at once. After editing the Java

generated by Jad, it's necessary to recompile the source back to bytecode in order to

integrate the changes. The ability to recompile the generated Java is not functional in the

FrontEnd Plus workbench for some reason, though it's simple enough to do the

compilation manually. Next we mention an animated tutorial for reversing a Java

implementation of the Password Vault application, which was introduced in Section 4.

Fig. 5.2 shows a FrontEnd Plus workbench session containing the decompilation of

List Arguments, class.

To demonstrate using the FrontEnd Plus to reverse engineer and patch a Java

bytecode, a Java version of the Password Vault application was developed; recall that the

animated tutorial in Section 4 introduced the machine code (C++) version. The Java

version of the Password Vault application uses 128-bit instead of 256-bit AES encryption

because Sun Microsystem's standard Java Runtime Environment (JRE) does not provide

256-bit encryption due to export controls. A trial limitation of five password records per

users is also implemented in the Java version. Unfortunately, Java does not support

conditional compilation, so the source code cannot be compiled to omit the trial

limitation without manually removing it or using a custom build process.

26

1*1 FiontEnd Plus v1.04 - ListArguments Java - [ListArgu men ts. Java] I

File Edit Search Window Tools and Options Feedback Homepages Help i »« i

! : A i 4 i c P | [b i ^ a B f i i a
!: jjL |3* I B ^ ! Courier New
• „..• A i

B - O Imports
!- -*§l java.io.PrintStream;

B-CS Methods

% ListArguments()
$ static void main(String argsfl)

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0 0 1 1
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

<l 1
j

M | #4 ft V

• I 1 0 - l ^ s m l i f ^ l
/ / Front End Plus GUI for JAB
/ / Decompiled : ListArgzunents. class

package i n f o . r e v e r s i n g p r o j e c t . l i s t a r g u m e n t s ;

Import j a v a . i o . P t r i n t S t . r e a m ;

p u b l i c c l a s s L i s t A r g u m e n t s
{

p u b l i c L i s t A r g u m e n t s ()

{

>

p u b l i c s t a t i c v o i d m a i n (S t r i n g a r g s [])

{

f o r (i n t i = 0 ; i < a r g s . l e n g t h ; i++)
S y s t e m . o u t . p r i n t I n ((new S t r i n g B u i l d e r ()) .

a p p e n d ! " A r g u m e n t [") - a p p e n d (i) . a p p e n d (" J
a p p e n d (a r g s [i]) . t o S t r i n g ()) ;

>
>

Martin Cowley

7]5|x)

•

i„J

") •

zJ

1

Figure 5.2. FrontEnd Plus workbench session for ListArguments.class.

5.4 Animated Solution to the Java Reversing Exercise

Using FrontEnd Plus (and Jad), one can successfully reverse engineer a non-

trivial Java application like Password Vault, and make permanent changes to the

behavior of the bytecode. Again, the purpose of having placed a trial limitation in the

Password Vault application is to provide an opportunity for one to observe how easy or

difficult it is for a reverse engineer to disable the limitation. Just like for machine code,

anti-reversing strategies can be applied to Java bytecode. We cover some basic, effective

strategies for protecting bytecode from being reverse engineered in a later section.

For instructional purposes, an animated solution that demonstrates the complete

27

http://io.PtrintSt.ream

end-to-end reverse engineering of the Java Password Vault application was created using

Qarbon Viewlet Builder and can be viewed using Macromedia Flash Player. The tutorial

begins with the Java Password Vault application, FrontEnd Plus, and Sun's Java JDK vl.6

installed on a Windows XP® machine. Fig. 5.3 contains an example slide from the

animated tutorial. The animated tutorial, source, and installer for the Java version of

Password Vault can be downloaded from the following locations:

> Java Bytecode Reversing & Patching Animated Solution:

http://reversingproject.info/repository. php?fileID=5_4_l

> Password Vault Java Source code:

http://reversingproject.info/repository.php?fileID=5_4_2

> Password Vault (Java Version) Windows® installer:

http://reversingproject.info/repository.php?fileID=5_4_3

Begin viewing the tutorial by extractmgpassword_vaultjava_reversing_exercise.zip to a

local directory and either running password_vaultjava_reversing_exercise.exe which

should launch the standalone version of Macromedia Flash Player, or by opening the file

password_vaultjava_reversing_exercise_viewlet._swf.html in a Web browser.

28

http://reversingproject.info/repository
http://reversingproject.info/repository.php?fileID=5_4_2
http://reversingproject.info/repository.php?fileID=5_4_3

6 Basic Anti-Reversing Techniques

Having seen that it is fairly straight-forward for a reverse engineer to disable the

trial limitation on the machine code and Java bytecode implementations of the Password

Vault application, we now investigate applying anti-reversing techniques to both

implementations in order to make it significantly more difficult for the trial limitation to

be disabled. While anti-reversing techniques cannot completely prevent software from

being reverse engineered, they act as a deterrent by increasing the challenge for the

reverse engineer. [5] states "It is never possible to entirely prevent reversing" and "What

is possible is to hinder and obstruct reversers by wearing them out and making the

process so slow and painful that they give up." The remainder of this section introduces

basic anti-reversing techniques, two of which are demonstrated in Sections 7 and 8.

While it is not possible to completely prevent software from being reverse

engineered, a reasonable goal is to make it as difficult as possible. Implementing anti-

reversing strategies for source code, machine code, and bytecode can have adverse effects

on a program's size, efficiency, and maintainability; therefore, it's important to evaluate

whether a particular program warrants the cost of protecting it. The basic anti-reversing

techniques introduced in this section are meant to be applied post-production, after the

coding for an application is complete and tested. These techniques obscure data and logic

and therefore are difficult to implement while also working on the actual functionality of

the application—doing so could hinder or slow debugging and, even worse, create a

dependency between the meaningful program logic and the anti-reversing strategies used.

29

[5] describes three basic anti-reversing techniques:

> Eliminating Symbolic Information: The first and most obvious step in preventing

reverse engineering of a program is to render unrecognizable, all symbolic

information in machine code or bytecode because such information can be quite

useful to a reverse engineer. Symbolic information includes class names, method

names, variable names, and string constants that are still readable after a program

has been compiled down to machine code or bytecode.

> Obfuscating the Program: Obfuscation includes eliminating symbolic

information, but goes much further. Obfuscation strategies include: modifying the

layout of a program, introducing confusing non-essential logic or control flow,

and storing data in difficult to interpret organizations or formats. Applying all of

these techniques can render a program difficult to reverse, however care must be

taken to ensure the original functionality of the application remains intact.

> Embedding Antidebugger Code: Static analysis of machine code is usually carried

out using a disassembler and heuristic algorithms that attempt to understand the

structure of the program. Active or live analysis of machine code is done using an

interactive debugger-disassembler that can attach to a running program and allow

a reverse engineer to step through each instruction and observe the behavior of the

program at key points during it's execution. Live analysis is how most reverse

engineers get the job done, so it's common for developers to want to implement

guards against binary debuggers.

30

7 Applying Anti-Reversing Techniques to Wintel Machine Code

Extreme care must be taken when applying anti-re versing techniques because

some ultimately change the machine code or Java bytecode that will be executed on the

target processor. In the end, if a program doesn't work, measuring how efficient or

difficult to reverse engineer it is becomes meaningless [18]. Some of the anti-reversing

transformations performed on source code to make it more difficult to understand in both

source and executable formats, can make the source code more challenging for a

compiler to process because the program no longer looks like something a human would

write. [18] states "any compiler is going to have at least some pathological programs

which it will not compile correctly." Compiler failures on so called "pathological"

programs occur because compiler test cases are most often coded by people—not

mechanically generated by a tool that knows how to try every fringe case and surface

every bug. Keeping this in mind, one should not be surprised if some compilers have

difficulty with obfuscated source code. Following the basic anti-reversing techniques

introduced in Section 6, we now investigate the technique Eliminating Symbolic

Information as it applies to Wintel machine code.

7.1 Eliminating Symbolic Information in Wintel Machine Code

Eliminating Symbolic Information calls for the removal of any meaningful

symbolic information in the machine code that is not important to the execution of the

program, but serves to ease debugging or reuse of it by another program. For example, if

a program relies on certain function or methods names (as a DLL does) the names of

31

those methods or functions will appear in the .idata (import data) section of the

Windows® PE header. In production versions of a program, the machine code doesn't

directly contain any symbolic information from the original source code—such as method

names, variable names, or line numbers; the executable file only contains the machine

instructions that were produced by the compiler [9]. This lack of information about the

connection between the machine instructions and the original source is unacceptable for

purposes of debugging—this is why most modern compilers, like GCC, include an option

to generate debugging information into the executable file that allow one to trace a failure

occurring at a particular machine instruction back to a line in the original source code [9].

To show the various kinds of symbolic information that are inserted into machine

code to enable debugging of an application, the GNU C++ compiler was directed to

compile the program Calculator.cpp with debugging information but to generate

assembly language instead of machine code. The source code for Calculator.cpp and the

generated assembly language equivalent are given in Table 7.1. The GNU compiler

stores debug information in the symbol tables (.stabs) section of the Windows® PE

header so that it will be loaded into memory as part of the program image. It should be

clear from the generated assembly in Table 7.1 that the debugging information inserted

by GCC is by no means a replacement for the original source code of the program. A

source-level debugger, like the GNU Project Debugger (GDB), must be able to locate the

original source code file to make use of the debugging information embedded in the

executable. Nevertheless, debugging information can give plenty of hints to a reverse

32

engineer, such as the count and type of parameters one must pass to a given method. An

obvious recommendation to make here, assuming there is an interest in protecting

machine code from being reverse engineered, is to ensure that source code is not

compiled for debugging when generating machine code for use by customers.

Table 7.1. Debugging information inserted into machine code.

Calculator.cpp:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

int main(int argc, char *argv[])
{
string input; int opl, op2; char fnc; long res
cout << "Enter integer 1: ";
getline (cin, input); opl = atoi(input.c_str())
cout « "Enter integer 2: ";
getline (cin, input); op2 = atoi(input.c_str())
cout « "Enter function [+|-|*]: ";
getline (cin, input); fnc = input.at (0);
switch (fnc)
{
case ' + ' :
res = doAdd(opl, op2); break;

case '-':
res = doSub(opl, op2); break;

case '*':
res = doMul(opl, op2); break;

}
cout « "Result: " << res « endl;
return 0;

}
long doAdd(int opl, int op2) { return opl + op2; }
long doSub(int opl, int op2) { return opl - op2; }
long doMul(int opl, int op2) { return opl * op2; }

Calculators (abbreviated assembly):

.file "Calculator.cpp"

.stabs "C:/SRECD/MiscCPPSource/Calculator/",100,0,0,LtextO

.stabs "Calculator.cpp",100,0,0, LtextO

.stabs "main:F(0,3)",36,0,12,_main

.stabs "argc:p (0,3)",160,0,12,8

.stabs "argv:p(40,35)",160,0,12,12

01
02
03
04
05
06
06
07
08
09
10

main:
.stabs "Calculator.cpp",132,0,0,Ltext
call Z5doAddii
call Z5doSubii
call Z5doMulii

33

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.stabs "_Z5doAddii:F(0,18)",36,0,33, Z5doAddii

.stabs "opl:p(0,3)",160,0,33,8

.stabs Mop2:p(0,3)",160,0,33,12
Z5doAddii:
movl 12(%ebp), %eax
addl 8(%ebp), %eax

.stabs "_Z5doSubii:F(0,18)",36,0,34, Z5doSubii

.stabs "opl:p(0,3)",160,0,34,8

.stabs "op2:p(0,3)",160,0,34,12
Z5doSubii:

.stabn 68,0,34,LM33- Z5doSubii
movl 8(%ebp), %eax
subl %edx, %eax

.stabs "_Z5doMulii:F(0,18)",3 6,0,35, Z5doMulii

.stabs "opl:p(0,3)",160,0,35,8

.stabs "op2:p(0,3)",160,0,35,12
Z5doMulii:

.stabn 68,0,35,LM35- Z5doMulii
movl 8(%ebp), %eax
imull 12(%ebp), %eax

The hunt for symbolic information doesn't end with information embedded by

debuggers, it continues on to include the most prolific author of such helpful information

—the programmer. Recall that in the animated tutorial on reversing Wintel machine

code (see Section 4) the key piece of information that led to the solution was the trial

limitation message found in the .rdata {read-only) section of the executable. One can

imagine that something as simple as having the Password Vault application load the trial

limitation message from a file each time time it's needed and immediately clearing it from

memory would have prevented the placement of a memory breakpoint on the trial

message, which was an anchor for the entire tutorial. An alternative to moving the trial

limitation message out of the executable would be to encrypt it so that a search of the

dump would not turn up any hits; of course encrypted symbolic information would need

to be decrypted before it is used. Encryption of symbolic information, as was discussed

34

in relation to the Wintel animated tutorial, is an activity related to the obfuscation of a

program, which we discuss next.

7.2 Basic Obfuscation of Wintel Machine Code

Obfuscating the Program calls for performing transformations to the source code

and/or machine code that would render either extremely difficult to understand but

functionally equivalent to the original. There are many kinds of transformations one can

apply with varying levels of effectiveness, and as [5] states "an obfuscation

transformation will typically have an associated cost (such as): larger code, slower

execution time, or increased runtime memory consumption (by the machine code)."

Because of the high-level nature of intermediate languages like Java and .NET bytecode,

there are free obfuscation tools that can perform fairly robust transformations on

bytecode so that any attempt to decompile the program will still result in source code that

compiles, but is near impossible to understand because of the obfuscation techniques that

are applied. [19] states "Obfuscation (of Java bytecode) is possible for the same reasons

that decompiling is possible: Java bytecode is standardized and well documented."

Unfortunately, the situation is very different for machine code because it is not

standardized; instruction sets, formats, and program image layouts vary depending on the

target platform architecture. The side-effect of this is that tools to assist with obfuscating

machine code are much more challenging to implement and expensive to acquire; no free

tools were found at the time of this writing. One such commercial tool, EXECryptor

(www.strongbit.com) is an industrial-strength machine code obfuscator that when applied

35

http://www.strongbit.com

to the machine code for the Password Vault application rendered it extremely difficult to

understand. The transformations performed by EXECryptor caused such extreme

differences in the machine code, including having compressed parts of it, that it was not

possible to line up the differences between the original and obfuscated versions of the

machine code to show evidence of the obfuscations. Therefore, to demonstrate machine

code obfuscations in a way that is easy to follow, we'll perform obfuscations at the source

code level and observe the differences in the assembly language generated by the GNU

C++ compiler. The key idea here is that the obfuscated program has the same

functionality as the original, but is more difficult to understand during live or static

analysis. There are no standards for code obfuscation, but it's relatively important to

ensure that the obfuscations applied to a program are not easily undone because

deobfuscation tools can be used to eliminate easily identified obfuscations [5].

Table 7.2 contains the source code and disassembly of VerifyPassword.cpp, a

simple C++ program that contains an insecure password check that is no weaker than the

implementation of the Password Vault trial limitation check. To find the relevant parts of

.text and .rdata sections that are related to the password check, the now familiar

technique of setting a breakpoint on a constant in the .rdata section was used.

Table 7.2. Listing of VerifyPassword.cpp and disassembly ofVerifyPassword.exe.

VerifyPassword.cpp:

0 1 : i n t m a i n (i n t a r g c , char * a r g v [])
02: {
03: const char *password = "juplter";
04: string specified;
05: cout << "Enter password: ";

36

06
07
08
09
10
11
12
13
14

getline (cin, specified);
if (specified.compare(password) == 0)
{
cout << "[OK] Access granted." << endl;

} else
{
cout << "[Error] Access denied." << endl;

VerifyPassword.exe disassembly (abbreviated):

•TEXT SECTION

"j up Iter"
0040144A MOV DWORD PTR SS:[EBP-1C],VerifyPa.00443000
"Enter password: "
00401463 MOV DWORD PTR SS:[ESP+4],VerifyPa.00443008
if (specified. compare (password) == 0)
004014A3 TEST EAX,EAX
004014A5 JNZ SHORT VerifyPa.004014CD
"[OK] Access granted."
004014A7 MOV DWORD PTR SS:[ESP+4],VerifyPa.00443019
"[Error] Access denied."
004014CD MOV DWORD PTR SS:[ESP+4],VerifyPa.0044302E

• RDATA SECTION

00443000 6A75702174657200456E746572207061 jup!ter.Enter pa
00443010 7373776F72643A20005B4F4B5D204163 ssword: .[OK] Ac
00443020 63657373206772616E7465642E005B45 cess granted..[E
00443030 72726F725D204163636573732064656E rror] Access den
00443040 6965642E000000000000000000000000 ied

Using the simple program VerifyPassword.cpp, we now investigate applying

obfuscations to make machine code more difficult to reverse engineer. The first

obfuscation that will be applied is a data transformation technique which [5] calls

"Modifying Variable Encoding". Essentially this technique prescribes that all

meaningful and sensitive constants in a program be stored or represented in an alternate

encoding, such as ciphertext. For numerics, one can imagine storing or working with a

function of a number instead of the number itself; for example, instead of testing for a <

37

10, we can obscure the test by checking if 1.2° < 1.210 instead. To make string constants

unreadable in a dump of the .rdata section we can employ a simple substitution cipher

whose decryption function would become part of the machine code. A simple

substitution cipher is an encryption algorithm where each character in the original string

is replaced by another using a one-to-one mapping [20]. Substitution ciphers are easily

broken because the algorithm is the secret [21], so while we will use one for ease of

demonstration, stronger encryption algorithms should be used in real-world scenarios.

Table 7.3 contains the definition of a simple substitution cipher that shifts each

character 13 positions to the right in the local 8-bit ASCII or EBCDIC character set.

Ciphertext is generated or read in printable hexadecimal to allow all members of the

character set, including control characters, to be used in the mappings. Note: unlike

ROT13 [22], this cipher is not it's own inverse—meaning that shifting each character an

additional 13 positions to the right will not perform decryption.

Table 7.3. Simple substitution cipher used to protect string constants.

SubstitutionCipher.h:
class SubstitutionCipher 01

02
03
04
05
06
07
08
09
10
11

Full source code:

public:
SubstitutionCipher ();
string encryptToHex(string plainText);
string decryptFromHex(string cipherText)

private:
unsigned char encryptTable[256];
unsigned char decryptTable[256];
char hexByte[2];

http://reversingproject. info/repository. php?fileID=7_2_l

38

http://reversingproject

Using the substitution cipher given in Table 7.3, we replace each string constant in

VerifyPassword, cpp with its equivalent ciphertext. Even strings with format modifiers

such as "%s" and "%d" can be encrypted as these inserts are not interpreted by methods

such as printf and sprint/until execution time. Table 7.4 contains the source code and

disassembly for VerifyPasswordObfuscated.exe, where each string constant in the

program is stored as ciphertext; when the program needs to display a message, the

ciphertext is passed to the bundled decryption routine. The transformation we've

manually applied removes the helpful information the string constants provided when

they were stored in the clear. Given that modern languages have well-documented

grammars, it should be possible to develop a tool that automatically extracts and replaces

all string constants with ciphertext that is wrapped by a call to the decryption routine.

Table 7.4. VerifyPasswordObfuscated.cpp and corresponding disassembly.

VerifyPasswordObfuscated.cpp:

01: #include "substitutioncipher.h"
02: using namespace std;
03: static const char *password = "77827D2E81727F";
04: static const char *enter_password = "527B81727F2D7D6E8080847C

7F71472D";
05: static const char *password_ok = "685C586A2D4E70707280802D747

F6E7B8172713B";
06: static const char *password_bad = "68527F7F7C7F6A2D4E70707280

802D71727B7672713B";
int main(int argc, char *argv[]) 07

08
09
10
11
12
13
14
15
16
17

SubstitutionCipher cipher;
string specified;
cout << cipher . decryptFromHex (enter__password) ;
getline(cin, specified);
if (specified.compare(cipher.decryptFromHex(password)) == 0)
{
cout << cipher.decryptFromHex(password_ok) << endl;

} else
{

39

19
20

cout << cipher.decryptFromHex(password_bad) << endl;

VerifyPasswordObfuscated.exe disassembly (abbreviated):

• RDATA SECTION

00445000 35323742383137323746324437443645 527B81727F2D7D6E
00445010 38303830383437433746373134373244 8080847C7F71472D
00445020 00373738323744324538313732374600 .77827D2E81727F.
00445030 36383543353836413244344537303730 685C586A2D4E7070
00445040 37323830383032443734374636453742 7280802D747F6E7B
00445050 38313732373133420000000036383532 8172713B....6852
00445060 37463746374337463641324434453730 7F7F7C7F6A2D4E70
00445070 37303732383038303244373137323742 707280802D71727B
00445080 37363732373133420000000000000000 7672713B

Once all constants have been stored in an alternate encoding, the next step one

could take to further protect the VerifyPassword.cpp program would be to obfuscate the

condition in the code that tests for the correct password. Applying transformations to

disguise key logic in a program is an activity related to the anti-reversing technique

Obfuscating the Program. For purposes of demonstration we'll implement some

obfuscations to the trial limitation check in the C++ version of the Password Vault

application, which was introduced in Section 4, but first we discuss an additional

application of the technique Obfuscating the Program that helps protect intellectual

property when proprietary software is shipped as source code.

7.3 Protecting Source Code Through Obfuscation

When delivering a software application to clients, there may exist a requirement

to ship the source code so that the application binary can be created on the client's

computer using shop-standard build and audit procedures. If the source code contains

40

intellectual property that is worth protecting, one can perform transformations to the

source code which make it difficult to read, but have no impact on the machine code that

would ultimately be generated when the program is compiled. To demonstrate source

code obfuscation, COBF [23], a free C/C++ source code obfuscator was configured and

given VerifyPassword.cpp as input; the results of which are displayed in Table 7.5.

Table 7.5. COBF obfuscation results for VerifyPassword.cpp.

COBF invocation:

01
02
03

C:\cobf_l.0 6\src\win32\release\cobf.exe
@C:\cobf_l.06\src\setup_cpp_tokens.inv -o cobfoutput -b -p C:
\cobf_l.0 6\etc\pp_eng_msvc.bat VerifyPassword.cpp

COBF obfuscated source for VerifyPassword.cpp:

01
02
03
04
05
06
07
08

#include"cobf.h"
Is lp Ik;If lo(lf ln,ld*lj[]){11 Id*lc="\x6a\x75\x70\x21\x74
\x65\x72";lh la;Ib«"\x4 5\x6e\x7 4\x65\x72\x2 0\x7 0\x61\x7 3\x7 3
\x7 7\x6f\x7 2\x64""\x3a\x20";li(lq,la) ; lm (la. lg (lc) ==0) {lb«"\x5b
\x4f\x4b\x5d\x20\x41" "\x63\x63\x65\x7 3\x73\x20\x67\x7 2\x61\x6e
\x7 4\x65\x64\x2e"«le; } lr {Ib«"\x5b\x4 5\x72\x72\x6f \x72\x5d
\x2 0\x41\x63\x63\x65\x73\x7 3\x2 0\x64" "\x65\x6e\x6 9\x65
\x64\x2e"«le; } }

COBF generated header (cobf.h):

01
02
03
04
05
06
07
08

#define Is using
#define lp namespace
#define Ik std
#define If int
#define lo main
#define Id char
•define 11 const
#define lh string

09
10
11
12
13
14
15

#define lb cout
#define li getline
#define lq cin
#define lm if
#define lg compare
#define le endl
#define lr else

COBF replaces all user-defined method and variables in the immediate source file

with meaningless identifiers. In addition, COBF replaces standard language keywords

and library calls with meaningless identifiers, however these replacements must be

undone before compilation; for example, the keyword "if cannot be left as "lm".

41

file:///cobf_l
file:///cobf_l
file:///cobf_l
file:///x4f/x4b/x5d/x20/x41
file:///x63/x63/x65/x7
file://3/x73/x20/x67/x7
file://2/x61/x6e
file:///x72/x5d
file:///x2
file://0/x41/x63/x63/x65/x73/x7
file://3/x2
file://0/x64
file:///x65/x6e/x6
file://9/x65

Therefore, COBF generates the cobf.h header file which includes the necessary

substitutions to make the obfuscated soure compilable. Through this process, all user-

defined method and variable names within the immediate file are lost, rendering the

source code difficult to understand, even if one performs the substitutions prescribed in

cobf.h. Since COBF generates obfuscated source as a continuous line, any formatting in

the source code that served to make it more readable is lost. While the original

formatting cannot be recovered, a code formatter such as Artistic Style can be used to

format the code using ANSI formatting schemes so that methods and control structures

can again be identified via visual inspection. Source code obfuscation is a fairly weak

form of intellectual property protection, but it does serve a purpose in real-world

scenarios where a given application needs to be built on the end-user's target computer—

instead of being pre-built and delivered on installation media.

7.4 Advanced Obfuscation of Machine Code

One of the features of an interactive debugger-disassembler like OllyDbg that is

very helpful to a reverse engineer is the ability to trace the machine instructions that are

executed when a particular operation or function of a program is tried. In the Password

Vault application, introduced in Section 4, a reverse engineer could pause the program's

execution in OllyDbg right before specifying the option to create a new password record.

To see which instructions are executed when the trial limitation message is displayed, the

reverser can choose to record a trace of all the instructions that are executed when

execution is resumed. To make it difficult for a reverse engineer to understand the logic

42

of a program through tracing or stepping through instructions, we can employ control

flow obfuscations, which introduce confusing, randomized, benign logic that serves to

make live and static analysis (debugging and tracing) difficult. The often randomized

and recursive nature of effective control flow obfuscations can make traces more difficult

to understand and interactive debugging sessions less helpful: randomization makes the

execution of the program appear different each time it's run, while recursion makes

stepping through code more difficult because of deeply nested procedure calls.

In [5], three types of control flow transformations are introduced: computation,

aggregation, and ordering. Computation transformations reduce the readability of

machine code and, in the case of opaque predicates, can make it difficult for a decompiler

to generate equivalent high-level language source code. Aggregation transformations

destroy the high-level language structure of a program. For example, if a programmer

used the structured programming technique of functional decomposition, inlining the

code of many functions into a single function in the machine code would make it

impossible to recover the original program structure. Ordering transformations

randomize the order of operations in a program to make it more difficult to follow the

logic of a program during live or static analysis (debugging or tracing). To provide an

example of how control flow obfuscations can be applied to protect a non-trivial

program, we'll apply both a computation and ordering control flow obfuscation to the

trial limitation check in the Password Vault application, and analyze their potential

effectiveness, by gathering some statistics during execution of the obfuscated code.

43

7.5 Wintel Machine Code Anti-Reversing Exercise

Apply the anti-reversing techniques Eliminating Symbolic Information and

Obfuscating the Program, both introduced in Sections 6 and 7, to the C/C++ source code

of the Password Vault application with the goal of making it more difficult to disable the

trial limitation. Rebuild the executable binary for the Password Vault application from

the modified sources using the GNU compiler collection for Windows. Show that the

Wintel machine code reversing and patching animated solution in Section 4.4 can no

longer be carried out as demonstrated.

7.6 Solution to the Wintel Anti-Reversing Exercise

The solution to the Wintel machine code anti-reversing exercise is given through

comparisons of the original and obfuscated source code of the Password Vault

application. As each anti-reversing transformation is applied to the source code,

important differences and additions are explained through a series of generated diff

reports and memory dumps. Once the anti-reversing transformations have been applied,

the impact they have on the machine code and how reversing the Password Vault

application becomes more difficult is covered; these obfuscations make it difficult to find

a good starting point and hinder live and static analysis. The obfuscated source code for

the Password Vault application is located in the password' vault cpp obfuscated

directory of the archive located at http://reversingproject.info/repository.php?

fileID=4 1 2.

44

http://reversingproject.info/repository.php

7.6.1 Encryption of String Literals

To eliminate the obvious starting point of setting an access breakpoint on the trial

message, all of the messages issued by the application are stored as encrypted

hexadecimal literals that are decrypted each time they are used—keeping the decrypted

versions out of memory as much as possible. Table 7.6 gives an example of the needed

code changes to PasswordVaultConsoleUtil.cpp.

Table 7.6. Encrypted strings are decrypted each time they are displayed.

133 case createPasswordRecord: return "Create a Password Record";
==> 137 case createPasswordRecord:
DecryptMessageText("507F72 6E81722D6E2D5D6E80 8 0847C7F712D5F727 07C7F7
1", textBuffer);

186 case recordLimitReached: return "Thank you for trying Password
Vault! You have reached the maximum number of records allowed in this
trial version.";

==> 190 case recordLimitReached:
DecryptMessageText("617 56E7B782D8 67C822D737C7F2D817F86767B742D5D6E8
080847C7F712D636E827 9812E2D6 67C822D756E83722D7F72 6E707572712D817572
2D7A6E857 67A82 7A2D7B8 27A6F72 7F2D7C7 32D7F72 707C7F718 02D6E7 97 97C84 72 7
12D7 67B2D817 57 6 8 02D817F7 6 6E7 92D8 372 7F8 07 67C7B3B", _textBuffer);

205 void PasswordVaultConsoleUtil::DecryptMessageText(const char
*_cipherText, string *_plainTextBuffer)
206 {
208 string cipherText(_cipherText);
210 SubstitutionCipher cipher;
212 _plainTextBuffer->assign(cipher.decryptFromHex(cipherText));
214 }

The net effect of encrypting the literals is shown in Fig. 7.1 where a dump of the .rdata

section of the Password Vault program image no longer yields the clues it once did.

Since the literals are no longer readable, one cannot simply locate and set a breakpoint on

the trial limitation message—as was done in the solution to the Wintel machine code

45

reversing exercise—causing a reverser to choose an alternate strategy. Note that more

than just the trial limitation message would need to be encrypted otherwise it would look

quite suspicious in a memory dump alongside other non-encrypted strings!

30400300
00401000
005SC000
00550000
00591080
00592000
00599000
0059B000

00001008
00156600
00001000
00034333
00301003
00007003
00301003
33802033

Password
Password
Password
Password
Password
Password
Password
Password

.text

.data

. i-data
/4
.bss
.idata
.rsrc

PE header
code
data

imports
resources

I nag
I nag
I nag

R
R
R

Inag R
I nag
Inag
Inag
Inag

R
R
R
R

RUIE
RUE
RUIE
FttUE
RUIE
RUIE
RUE
RUE

73 73
22 7B
64 20
50 61
69 6C
76 65
2E 00
54 68
79 69
75 6C
61 63
6D 29
72 64
68 69
6E 2E

77
2P,
73
73
65
64
5B
61
6E
74
68
6E
73
73
00

rtL

6F>?2 64
7D122 20
75163 63
73:77 6F
20122 7B
20:73 75
57:61 72
6E;6B 20
67 20 50
21 20 59
65|64 20
75*6D 62
20:61 6C
20:74 72
4D: 65 73

1
* "

Data

20
77
65
72
2P,
63
6E
79
61
6F
74
65
6C
69
73

66! 6F
61,73
73:73
64:20
7D; 22
63:65
69! 6E
6F!75
73173
75:20
68|6S
72:20
6FI77
61.6C
61-67

Obruscanon

72
20
66
76
20
73
67
20
77
68
20
6F
65
20
65

20
63
75
61
77
73
SD
66
6F
61
6D
66
64
76
20

75
68
6C
75
61
66
20
6F
72

73
61
6C
6C
73
75
00
72
64

76i65
61 78
20
20
65
4E

mi

72
69
72
6F

38
37
32
38
37
38
35
32
37
32
38
37
33
42
37
37
32
37
32
37
37
38
37
37
36
37
38
37
35
35

65
6E
79
74
20
6C
00
20
20
20
69
65
6E
73
74

30
43
46
30
31
30
44
44
36
46
33
32
42
37
38
46
44
31
44
32
31
35
41
46
45
36
31
46
41
42

72
67
2E
20
73
6C
00
74
56
72
6D
63
20
69
20

38
37
38
32
32
37
36
38
37
32
37
38
00
34
32
32
35
32
36
32
32
37
36
37
37
37
37
38
37
37

20
65
00
66
61
79
00
72
61
65
75
6F
74
6F
46

ssword for user
"C*>" was change
d successfuIly..
Password vauIt f
ile "{#}" was sa
ved successfully
..CUarn ing3
Thank you for tr
y ing Password Va
u It? Vou have re
ached the nax inu
n number- of reco
rds a I Lowed in t
h is trial versio
n..Message Not F

30138 34 37 43i 37 46
46:32 44 38 32i38 30
38:33 37 38 41 32 46
44 37 30 37 35136 45
44 38 30 38 32137 30
33 38 32 37 39
45:38 30 38 30
33 36 45 38 32
39 37 32 32 44
44:38 34 36 45
32:37 31 32 44
30:38 30 37 33
36:38 36 34 36
36:41 32 44 00
44:38 36 37 43
44:38 31 37 46
44:36 45 38 30

37 39
38 34
37 39
32 46
38 30
38 30
38 32
45 37
36 31
38 32
38 36
38 30

44:36 33 36 45|38 32
36:37 43 38 32132 44
44:37 46 37 32136 45
44:38 31 37 3Sj37 32
36:37 41 38 321 37 41
46:37 32 37 461 32 44
32137 30 37 43 37 46
39i37 39 37 43
42:32 44 38 31
46!37 36 36 45
30!37 36 37 43

38 34
37 35
37 39
37 42

32:38 30 38 30 36 45
43:38 31 32 44! 35 33

37
37
32
37
37
38
37
38
38
32
38
37
46
37
32
37
38
37
37
37
32
32
37
37
37
37
32
33
37
37

31 !32
32 37
44 38
42:37
30 37
36 33
43|37
31 32
38-33
44:38
32; 37
39: 37
37: 42
35 36
4437
36-37
34:37
39, 38
35 36
30 37
44:37
44: 37
43 37
31i 38
32! 37
36:38
44; 38
42:00
34-37
43:38

44
46
34
34
32
42
46
44
37
30
30
39
37
45
33
42
43
31
45
35
41
42
33
30
31
30
33
00
32
32

37
32
36
37
38
00
37
37
38
36
37
38
36
37
37
37
37
32
38
37
36
38
32
32
32
32
37
00
32
37

33
44
45
32
30
00
31
33
41
45
38
36
37
42
43
34
46
45
33
32
45
32
44
44
44
44
32
00
44
42

8080847C7F712D73
7C7F2D8280727F2D
2F88378FI2F2D346E
802D70756E7B7472
712D808278707280
8073827979863B..
SD6E8080847C7F71
2D836E8279812D73
7679722D2F88378P,
2F2D846E8B2D806E
8372712D80827070
7280807382797986
3B.68646E7F7B767
B746R2D.617S6E7B
782D867C822D737C
7F2D817F86767B74
2D5D6E8080847C7F
712D636E8279812E
2D667C822D756E83
722D7F726E707572
712D817572207P.6E
857670827R2D7B82
7B6F727F2D7C732D
7F72707C7F71802D
6E79797C8472712D
767B2D817S76802D
817F766E792D8372
7F80767C7B3B
5R7280806E74722D
5B7C812D537C827B

Figure 7.1. Result of obfuscating all string literals in the program.

46

7.6.2 Obfuscating the Numeric Representation of the Record Limit

Having obfuscated the string literals in the program image, we'll assume that a

reverse engineer will need to select the alternate strategy of pausing the program's

execution immediately before specifying the input that causes the trial limitation message

to be displayed. Using this strategy, a reverser can either capture a trace of all the

machine instructions that are executed when the trial limitation message is displayed, or

debug the application—stepping through each machine instruction until a sequence that

seems responsible for enforcing the trial limitation is reached. Recall that in the solution

to the Wintel machine code reversing exercise, an obvious instruction sequence that

tested a memory location for a limit of five password records was found. By using an

alternate but equivalent representation of the record limit we can make the record limit

test a bit less obvious. The technique we employ here is to use a function of the record

limit instead of the actual value; for example, instead of testing for a <= 5, where a is the

record limit, we obscure the limit by testing if 2a <= 25. Table 7.7 gives an example of

the needed code changes to PasswordVault.cpp.

Table 7.7. Using a function of the record limit to obfuscate the condition.

176 void PasswordVault::doCreateNewRecord()
178 #ifdef TRIALVERSION
180 // Add limit on record count for reversing exercise
181 if (passwordStore.getRecords() .size () >= TRIAL_RECORD_LIMIT)

==> 181 if ((pow(2.0, (double)passwordStore.getRecords().size()) >=
pow(2.0, 5.0)))

The effects of the source code changes in Table 7.7 on the machine code are

shown in Fig. 7.2. A function of the record limit is referenced during execution instead of

47

the limit itself. This type of obfuscation is as strong as the function used to obscure the

actual condition is to unravel. Keep in mind that a reverse engineer will not have the

non-obfuscated machine code for reference, so even a very weak function, like the one

used in this solution, may be effective at wasting some of a reverser's time. The numeric

function used here is very simple; more complex functions can be devised that would

further decrease the readability of the machine code.

7.6.3 Control Flow Obfuscation for the Record Limit Check

We introduce some non-essential, recursive, and randomized logic to the

password limit check in PasswordVault.cpp to make it more difficult for a reverser to

perform static or live analysis. A design for obfuscated control flow logic which

ultimately implements the trial limitation check is given in Fig. 7.3. Since no standards

exist for control flow obfuscation, this algorithm was designed by the author using the

cyclomatic complexity metric defined by McCabe [24] as a general guideline for creating

a highly-complex control flow graph for the trial limitation check.

48

if (passwordStore.getRecords().size() >= TRIftLRECORDLIMIT)

084078E0
884070E7
00487BE9
084078F1
004078F9
08407180
80407105
0040718B
004071SD
00407110
0040711A

83BD B0FFFFFF 04
-76 21
C74424 08 03000008
C74424 04 00000000
C70424 36000000
E8 01B3FFFF

-E9 BR070000
8D45 D8
S90424
C785 08FFFFFF FFFFFFFF
E8 3BBCFFFF

CMP DWORD PTR SS:[EBP-1003,4
JBE SHORT Password.0040710A
MOU DWORD PTR SS:CESP+S],3
MOU DWORD PTR SS:[ESP+4],0
MOU DWORD PTR SS:CESP],36
CALL Password.00401406
JMP Password.004078C4
LEA EAX,DWORD PTR SS:CEBP-28]
MOU DWORD PTR SS:[ESP],EAX
MOU DWORD PTR SS:CEBP-F8],-1
CALL Password.00402D5H

if ((pou(2.0, (double)passuordStore.

getRecoi-ds() .size()) >= pow(2.0, 5.0)))

Computation
Obfuscation

004ti7iea
00407196
0M40710C
0840710E
S0407110
00407111
80407113
80487115
804871 ID
0040712S
0040712C
00407136
0048713B
00407140
00487143
00407146
084071SB

DD0S 20E4SS00
D085 F8FEFFFF
DAE9
DFE0
9E
• 73 02
'EB 2B
C74424 08 03000000
C74424 04 00000000
C70424 36000000
C785 08FFFFFF FFFFFFFF
E8 CBA2FFFF
'E9 BA070000
8D4S D8
890424
C78S 08FFFFFF FFFFFFFF
E8 0EBCFFFF

FLD QWORD PTR DS:CSSE420]
FLD QWORD PTR SS:CEBP-108]
FUCOMPP
FSTSW BX
SAHF
JNB SHORT Password.004071 IS
JMP SHORT Password.00407140
MOU DWORD PTR SS: [ESP+3]. 3
MOU DWORD PTR SS:CESP+4],0
MOU DWORD PTR SS: C ESP 3, 36
MOU DWORD PTR SS:[EBP-F8:,-1
CfiLL Password.00401406
JMP Password.B04078FA
LEfi EAX,DWORD PTR SS:CEBP-283
MOU DWORD PTR SS:tESP],EfiX
MOU DWORD PTR SS:CEBP-F8],-1
CfiLL Password.00402D5R

Live analysis of the computation I
00407186
0840718C
0040718E
80487118
80487111
80487113

...DD8S 20E45B00:1
DD8S F8FEFFFF
DfiE9
DFE0
9E

-73 02
-EB 2B

FLO JWQBD ETR OS: tSSE4203
FLD QWORD PTR SS:[EBP-1083
FUCOMPP
FSTSW RX
SfiHF
JNB SHORT Password.004071IS
JMP SHORT Password.00407140

DS:C00SEE420D=32.00000000000000
Stack SS:[0022FBR0]=32.00000000008000

00407100
08407106

8040710E
08407118
00407111
80487113

. DD05 20E45S00

. D08S F8FEFFFF

,,:mm::
. DFE0
. 9E
.-73 82
.-EB 2B

FLD QWORD PTR DS:[SSE4203
FLD QWORD PTR SS:[EBP-1083
FUCOMPP
FSTSW RX
SRHF
JNB SHORT Password.004071IS
JMP SHORT Password.00407140

The record limit of 5 is
obscured by the use of the
value 32.0 (2A5) when the
operands are loaded and
the condition is tested.

ST<1)=32.000000000000080000
ST=32.000000000000000000

Figure 7.2. Record limit comperands are represented as exponents with a base of 2.

The record limit check is abstracted out into the method isRecordLimitReached

which returns whether or not the record limit is reached after having invoked the method

isRecordLimitReached_0. The method isRecordLimitReached_0 invokes itself

recursively a random number of times, growing the call stack by a minimum of 16 and a

maximum of 64 frames. Each invocation of isRecordLimitReached 0 tests whether the

record limit has been reached, locally storing the result, before randomly invoking one of

49

the methods isRecordLimitReached_l, isRecordLimitReached_2, or

isRecordLimitReached_3. When the call stack is unraveled, isRecordLimitReached J)

finally returns whether or not the record limit is reached in the method

isRecordLimitReached. Table 7.8 shows the required code changes to implement the

control flow obfuscation. Note that a sum of random numbers returned from methods

isRecordLimitReached_1, isRecordLimitReachedJ2, and isRecordLimitReached'_3 is

stored in randCallSum, a private attribute of the class; this is to protect against a compiler

optimizer discarding the calls because they would otherwise have no effect on the state of

any variables in the program.

50

reached

is Re cord Limit Reached Q

i s Re cord Limit Re ached _O0

boo I reached =

(2"records.getSizeO) >= (2*5)

max (16, abs(randQ)%64)

£

i s Re cord Li mit Re ach ed _2 0

Figure 7.3. Obfuscated control flow logic for testing the password record limit.

Table 7.8. Implementation of the control flow obfuscation in Fig. 7.3.

PasswordVault.cpp:

if (passwordStore.getRecords() .size () >= TRIAL_RECORD_LIMIT)
===> if (isRecordLimitReached())

01
02
03
04
05
06

bool PasswordVault::isRecordLimitReached()
{
srand(time(NULL));
controlFlowAltRemain = max (4, abs(randO) % 64)
return isRecordLimitReached 0();

51

bool PasswordVault::isRecordLimitReached_0()
{
while (controlFlowAltRemain > 0)
{
controlFlowAltRemain--;
isRecordLimitReached 0() ;

bool reached = (pow(2.0,
(double)passwordStore.getRecords().size()) >= pow(2.0, 5.0));
17:

randCallSum = 0;

switch (abs(randO) % 3)
{
case 0:
randCallSum += isRecordLimitReached_l() ;
break;

case 1:
randCallSum += isRecordLimitReached_2() ;
break;

case 2:
randCallSum += isRecordLimitReached_3() ;
break;

return reached;

unsigned int PasswordVault::isRecordLimitReached_l()

return abs(rand());

unsigned int PasswordVault::isRecordLimitReached_2()

return abs(rand());

unsigned int PasswordVault::isRecordLimitReached_3()

return abs(rand());

52

7.6.4 Analysis of the Control Flow Obfuscation Using Run Traces

The goal of this analysis is to demonstrate that even though the Password Vault

application is given identical input and delivers identical output on subsequent runs,

OllyDbg run traces, which contain the executed sequence of assembly instructions, will

be significantly different from each other—making it difficult for a reverser to understand

the trial limitation check through live or static analysis of the disassembly. Live analysis

is hampered more by randomization than static analysis is because the control flow of the

trial limitation check is randomized each time it is run; one can imagine the confusion

that would arise if breakpoints are not always triggered, or triggered in an unpredictable

order.

OllyDbg run traces are captured using the run trace view once the execution of a

program has been paused at the desired starting point. To have the trace logged to a file

in addition to the view, select "log to file" on the context menu of the run trace view.

Begin the trace by selecting "Trace into" on the "Debug" menu; the program will

execute, but much more slowly than normal since each instruction must be inspected and

added to the run trace view and optional log file. An OllyDbg trace will include all the

instructions executed by the program and its operating system dependencies; fortunately

the trace is columnar with each instruction qualified by the name of the module that

executed it, so it is possible to post process the trace and extract only those instructions

executed by a particular module of interest. For example, in the case of the Password

Vault traces which we will analyze in this section, the Sed (stream-editor) utility was used

53

to filter the run traces—leaving only instructions executed by the "Password" module.

To analyze the effectiveness of the ordering (control flow) obfuscation, statistics

on the differences between three different run traces were gathered using a modification

of Levenshtein Distance (LD), a generalization of Hamming Distance, to compute the

edit-distance—the number of assembly instruction insertions, deletions, or substitutions

needed to transform one trace into the other; we've modified LD to consider each

instruction instead of each character in the run traces. Fig. 7.4 illustrates the significant

differences that exist between the traces at the point of the obfuscated trial limitation

check. The randomized control-flow obfuscation causes significant differences in

subsequent executions of the trial limitation check—hopefully creating enough of a

deterrent for a reverse engineer by hampering live and static analysis efforts. Table 7.9

contains the statistical data that was gathered for the analysis.

A C++ implementation of Levenshtein Distance, written for this solution, can be

downloaded from http://reversingproject.info/repository.php?fileID=7_6_l. Note that

computing the edit-distance between two large files of any type can take many hours a

modern PC. For reference, the average size of three traces analyzed in this section is

10MB, and to compute the edit-distance between two of them required an average of-20

hours of CPU time on an Intel Pentium 1.6GHz Dual-core processor. The LD

implementation employed in this analysis uses a dynamic-programming approach that

requires O(m) space; note that some reference implementations of LD require O(mn)

space since they use a(m+ l) x (n + 1) matrix which is impractical for large files [25].

54

http://reversingproject.info/repository.php?fileID=7_6_l

The ~20 hour execution time for the LD implementation is mainly because the dynamic

programming algorithm is quite naive; perhaps an approximation algorithm would

perform significantly better.

Analysis of Run Trace Levenshtein Edit Distances

Code path: obfuscated thai limitation check

•*• Edit Distance

Trace # 2 - T r a c e # 3
Trace #1 — Trace #2 Trace #1 — Trace #3

Figure 7.4. Edit-distances between three run traces of the trial limitation check.

55

Table 7.9. Statistical data gathered for randomized control-flow obfuscation.

Trace Comparison Edit Distance

Trace #1 -> Trace #2 101414

Trace #2 -» Trace #3 67590

Trace #1 -> Trace #3 168892

Mean Edit Distance 112632

Trace Comparison Standard Deviation

Trace #1 -*• Trace #2 7932.32

Trace #2 -»• Trace #3 31849.5

Trace #1 - • Trace #3 39781.83

8 Applying Anti-Reversing Techniques to Java Bytecode

It was demonstrated in the Java reversing and patching exercise of Section 5.2

that decompilation of Java bytecode to Java source code is possible with quite good

results. While it is most often the case that we cannot recover the original Java source

code from the bytecode, the results will be functionally equivalent. When new features

are added to the Java language they won't always introduce new bytecode instructions;

for example, support for generics is implemented by carrying additional information in

the constants pool of the bytecode that describes the type of object a collection should

contain; this information can then be used at execution time by the JVM to validate the

type of each object in the collection. The strategy of having newer Java language

56

constructs result in compatible bytecode with optionally-utilized metadata provides the

benefit of allowing legacy Java bytecode to run on newer JVMs, however if a decompiler

doesn't know to look for the metadata, some information is lost; for example, the fact that

a program used generics would not be recovered and all collections would be of type

Object (with cast statements of course).

Recall that in Section 4.1 the Boomerang decompiler failed to decompile the

machine code for a simple C/C++ "Hello World" program, however in Section 5.1, the

Jad decompiler produced correct Java source code for a slightly larger program. Given

these results, one does need to be concerned with with protecting Java bytecode from

decompilation if there is significant intellectual property in the program. The techniques

used to protect machine code in the anti-reversing exercise solution, detailed in section

7.6, can also be applied to Java source code to produce bytecode that is obfuscated.

Since Java bytecode is standardized and well-documented there are many free Java

obfuscation tools available on the Internet such as SandMark [27], ProGuard [29], and

RetroGuard [28] which perform transformations directly on the Java bytecode instead of

on the Java source code itself. Obfuscating bytecode is inherently easier than obfuscating

source code because bytecode has a significantly more strict and organized representation

than source code—making it much more easy to parse. For example, instead of parsing

through Java source code looking for string constants to encrypt (protect), one can easily

look in the constant pool section of the bytecode. The constant pool section of a Java

Class File, unlike the .rdata section of Wintel machine code, contains a well-documented

57

table data structure that makes available the name and length of each constant; on the

other hand, the .rdata section of Wintel machine code simply contains all the constants in

the program in a contiguous, unstructured bytestream. The variable names, method

names, and string literals, in the constant pool section of Java bytecode provide a wealth

of information to a reverse engineer regarding the structure and operation of the bytecode

and hence should be obfuscated to protect the software. Therefore, we now look at

applying the technique Eliminating Symbolic Information in the context of Java bytecode.

8.1 Eliminating Symbolic Information in Java Bytecode

Variable, class, and method names, are all left intact when compiling Java source

code to Java bytecode. This is a stark difference from machine code where variable and

method names are not preserved. Sun Microsystem's Java compiler javac provides an

option to leave out debugging information in Java bytecode: specifying javac -g:none will

exclude information on line numbers, the source file name, and local variables. This

option offers little to no help in fending off a reverse engineer since none of the variable

names, methods names, or string literals are obfuscated. According to the documentation

for Zelix Klassmaster [26], a Java bytecode obfuscation tool, a high-level of protection

can be achieved for Java bytecode by applying three transformations: (1) Name

Obfuscation, (2) String Encryption, and (3) Flow Obfuscation. Unfortunately, at the time

of this writing, no free-of-charge software tool was found on the Internet that can perform

all three of these transformations to Java bytecode. A couple of tools, namely ProGuard

[29] and RetroGuard [28] are capable of applying transformation (1), and SandMark [27],

58

a Java bytecode watermarking and obfuscation research tool, is capable of applying

transformation (2), although not easily. Experimentation with SandMark V3.4 was not

promising since its "String Encoder" obfuscation function only worked on a trivial Java

program; it failed when given more substantial input such as some of the classes that

implement the Java version of the Password Vault application. It's clear from a survey of

existing Java bytecode obfuscators that a full-function, robust, open-source bytecode

obfuscator is sorely needed. Zelix Klassmaster, a commercial product capable of all the

three transformations mentioned above, is said to be the best overall choice of Java

bytecode obfsucator in [19]. A 30-day evaluation version of Zelix Klassmaster can be

downloaded from the company's web site.

Of course one can always make small-scale modifications to Java bytecode with a

bytecode editor such as CafeBabe [30]. Incidentally, CafeBabe gets its catchy name from

the fact that the hexadecimal value OxCAFEBABE comprises the first four bytes of every

Java class file; this value is known as the "magic number" which identifies every valid

Java class file. To demonstrate applying transformations to Java bytecode, we'll target

the bytecode for program CheckLimitation.java whose source code is given in Table 8.1.

For this demonstration, assume that a reverse engineer is interested in eliminating the

limit on the number of passwords and that we are interested in protecting the software.

Begin obfuscating CheckLimtiation.java by applying transformation (1) Name

Obfuscation: rename all variables and methods in the bytecode so they no longer provide

hints to a reverser when the bytecode is decompiled or edited. Using ProGuard,

59

Table 8.1. Unobfuscated source listing of CheckLimitation.java.

01
02
03
04
05
06
07
08
09
10
11
12
13
14

public class CheckLimitation {

private static int MAX_PASSWORDS = 5;
private ArrayList<String> passwords;

public CheckLimitation()

{
passwords = new ArrayList<String>();

public boolean addPassword(String password)

{
if (passwords.size() >= MAX_PASSWORDS)

{
System.out.println("[Error] The maximum number of passwords

has been exceeded!");
15
16
17
18
19

return false;
else

passwords.add(password) ;
System.out.println("[Info] password (" + password + ")

added successfully.");
20:
21:
22:
23:

public static void main(String[] arguments) 24
25
26
27
28
29
30
31
32

return true;
}

}

CheckLimitation store = new CheckLimitation();
boolean loop = true;
for (int i = 0; i < arguments.length && loop; i++)

if (!store.addPassword(arguments[i])) loop = false;

obfuscate the bytecode and then decompile it using Jad to observe the effectiveness of the

obfuscation; the result of decompiling the obfuscated bytecode using Jad is given Table

8.2. As expected, all user-defined variable and method names have been changed to

meaningless ones; of course the names of Java standard library methods must be left as-

is. ProGuard seems to use a different obfuscation scheme for local variables within a

60

Table 8.2. Jad decompilation of ProGuard obfuscated bytecode.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

public class CheckLimitation

private static int a = 5;
private ArrayList b;

public CheckLimitation ()
{
b = new ArrayList();

public boolean a(String s)
{
if (b.size () >= a)

System.out.println("[Error] The maximum number of passwords
has been exceeded!");
16
17
18
19
20

return false;
else

b.add(s);
System.out.println((new StringBuilder()).append("[Info]

password(") .append(s) .append(") added successfully.") .toString ());
21:
22:
23:
24:

public static void main(String args[]) 25
26
27
28
29
30
31
32
33

return true;
}

}

CheckLimitation checklimitation = new CheckLimitation();
boolean flag = true;
for (int i = 0; i < args.length && flag; i++)
if(!checklimitation.a(args[i])) flag = false;

method; it's not clear why the variable "loop" in the main method has been changed to

"flag" since it's still a very descriptive name.

Next we further obfuscate the bytecode by applying transformation (2) String

Encryption, and we do so by employing the "String Encoder" obfuscation in SandMark to

protect the string literals in the program from being understood by a reverser. The "String

61

Encoder" function in SandMark implements an encryption strategy for literals in the

bytecode that is similar to the one which was demonstrated at the source code level in the

Wintel machine code anti-reversing background section: each string literal is stored in a

weakly encrypted form and decrypted on-demand by a bundled decryption function.

Table 8.3 contains the Jad decompilation result for the CheckLimitation.java bytecode

that was first obfuscated using ProGuard and subsequently obfuscated using the "String

Encoder" functionality in SandMark.

Table 8.3. Jad decompilation of SandMark (and ProGuard) obfuscated bytecode.

public class CheckLimitation {

private static int a = 5;
private ArrayList b;

public CheckLimitation()

{
b = new ArrayList();

}

public boolean a(String argO)

{
if(b.size() >= a)

01
02:
03:
04
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
System.out.println(Obfuscator.DecodeString("\253\315\253\315\uFF9E\u2A3
Du5D69\u2AA5\u3884\u91CF\u5341\u5604\uDF5B\uA902\uB6C8\u0C8E\u67 61\ulF3
5\u35 9D\uBD96\uADA4\u94 6F\u8 5EE\uE8A0\u9274\u58 67\u2C9F\u3 07 7\u5E67\u2A
0B\u90D2\uB83 9\u58FC\uBE95\u0EBA\uDDF4\u313C\uB7 51\uFA9D\ul6 6C\u42A3\u6
DlD\uB25A\uA15E\u02 6E\u6ECE\u908C\u557B\u6ABD\uC5D5\u80 0C\uD38A\u3D97\u
FB5E\uC4C2\uBBAC\u9ADC\u253E\u769E\u4D32\u4FB3\u0CC7"));
16
17
18
19
20

return false;
else

b.add(argO);
System.out.println((new

StringBuilder()).append(Obfuscator.DecodeString("\253\315\253\315\uFF9E
\u2A31\u5D7 5\u2ABl\u3 884\u91E0\u533C\u5 654\uDF6E\uA919\uB6DE\u0CD9\u67 6
3\ulF26\u3581\uBDDF\uADEl")).append(argO).append(Obfuscator.DecodeStrin
g("\253\315\253\315\uFFEC\u2A58\u5D7A\u2AB3\u388F\u91D8\u5378\u5604\uDF
7C\uA91F\uB6CE\u0CCD\u67 69\ulF27\u35 96\uBD9 9\uADBC\u947 6\u85EF\uE8F9\u9

62

file:///253/315/253/315/uFF9E/u2A3
file:///253/315/253/315/uFF9E
file:///u2A31/u5D7
file://5/u2ABl/u3
file://884/u91E0/u533C/u5
file://654/uDF6E/uA919/uB6DE/u0CD9/u67

234")) .toStringO) ;
21
22
23
24
25
26
27
28
29
30
31
32

return true;

public static void main(String arg0[])

CheckLimitation checklimitation = new CheckLimitation()
boolean flag = true;
for(int i = 0; i < argO.length && flag; i++)
if(!checklimitation.a(argO[i])) flag = false;

Note that each string literal is decrypted using the Obfuscator class which was generated

by SandMark. Since Obfuscator is a public class, it must be generated into a separate file

named Obfuscator.class—making it very straight-forward for a reverser to isolate,

decompile, and learn the encryption algorithm. The danger of giving away the code for

the string decryption algorithm is that it could then be used to programmatically update

the constants pool section of the bytecode to contain the plaintext versions of each string

literal, essentially undoing the obfuscation. Ideally, we would like to prevent a reverser

from being able to successfully decompile the obfuscated bytecode; this can be

accomplished through control flow obfuscations which we explore next.

8.2 Preventing Decompilation of Java Bytecode

One of the most popular, and fragile, techniques for preventing decompilation

involves the use of opaque predicates which introduce false ambiguities into the control

flow of a program—tricking a decompiler into traversing garbage bytes that are

masquerading as the logic contained in an else clause. Opaque predicates are false

branches, branches that appear to be conditional but are really not [5]. For example, the

63

conditions "if (1 == 1)" and "if (1 == 2)" implement opaque predicates because the

first always evaluates to true, and the second always to false. The essential element in

preventing decompilation with opaque predicates is to insert invalid instructions in the

else branch of an always-true predicate (or the if-body of an always false predicate).

Since the invalid instructions will never be reached during normal operation of the

program there is no impact on the program's operation. The obfuscation only interferes

with decompilation, where a naive decompiler will evaluate both "possibilities" of the

opaque predicate and fail on attempting to decompile the invalid, unreachable

instructions. Fig. 8.1 illustrates how opaque predicates would be used to protect bytecode

from decompilation. Unfortunately, this technique, often used in protecting machine

code from disassembly, cannot be used with Java bytecode because of the presence of the

Java Bytecode Verifier in the JVM. Before executing bytecode, the JVM performs the

following checks using single-pass static analysis to ensure that the bytecode has not

been tampered with; to understand why this is beneficial, imagine bytecode being

executed as it's received over a network connection. [31] documents the following

checks made by the Java Bytecode Verifier:

> Type correctness: arguments of an instruction, whether on the stack or in registers,

should always be of the type expected by the instruction.

> No stack overflow or underflow: instructions which remove items from the stack

should never do so when the stack is empty (or does not contain at least the

number of arguments that the instruction will pop off the stack). Likewise,

64

instructions should not attempt to put items on top of the stack when the stack is

full (as calculated and declared for each method by the compiler).

> Register initialization: Within a single method any use of a register must come

after the initialization of that register (within the method). That is, there should be

at least one store operation to that register before a load operation on that register.

>• Object initialization: Creation of object instances must always be followed by a

call to one of the possible initialization methods for that object (these are the

constructors) before it can be used.

> Access control: Method calls, field accesses, and class references must always

adhere to the Java visibility policies for that method, field, or reference. These

policies are encoded in the modifiers (private, protected, public, etc.).

Opaque Predicate Template

doWorkO;

Figure 8.1. Usage of opaque predicates to prevent decompilation.

Based on the high-level of bytecode integrity expected by the JVM, introducing

65

garbage or illegal instructions into bytecode is not feasible. However, this technique does

remain viable for machine code, though there is some evidence that good disassemblers,

such as IDA Pro, do check for rudimentary opaque predicates [5]. The authors of

SandMark claim that the sole presence of opaque predicates in Java bytecode, without

garbage bytes of course, can make decompilation more difficult. Therefore, SandMark

implements several different algorithms for sprinkling opaque predicates throughout

bytecode. For example, SandMark includes an experimental "irreducibility" obfuscation

function which is briefly documented as "insert jumps into a method via opaque

predicates so that the control flow graph is irreducible. This inhibits decompilation."

Unfortunately this was not the case with the program DateTime.java shown in Table 8.4

as Jad was still able to decompile DateTime.class without any problems despite the

changes made by SandMark's "irreducibility" obfuscation. The bytes of the unobfuscated

and obfuscated class files were compared to verify that SandMark did make significant

changes; perhaps SandMark does work for special cases, so more investigation is likely

warranted. In any event, opaque predicates seem to be far more effective when inserted

into machine code because of the absence of any type of verifier that validates all

machine instructions in a native binary before allowing it to execute.

SandMark's approach of using control flow obfuscations that leverage opaque

predicates in an attempt to the confuse decompilers is not unique because Zelix

Klassmaster, a commercial product, implements this approach as well. When Zelix

Klassmaster V5.2.3a was given DateTime.class as input with both "aggressive" control

66

Table 8.4. Listing of DateTime.java

Listing of DateTime.java (abbreviated):

public static void main(String arguments[]) 01
02
03
04
05
06
07
08
09

new DisplayDateTime().doDisplayDateTime();

public void doDisplayDateTime()

Date date = new Date();
System.out.println(String.format(DATE_TIME_MASK,

date.toString()));
10: }

flow and "String Encryption" selected, some interesting results were observed in the

corresponding Jad decompilation. Table 8.5 lists the Jad decompilation of Zelix's attempt

at obfuscating DateTime. class. Zelix performed the same kind of name obfuscation seen

with ProGuard, except it went a little too far and renamed the main method; this was

corrected by manually adding an exception for methods named "main" in the tool. The

results of the decompilation show that Zelix's control flow obfuscation and use of opaque

predicates is somewhat effective for this particular example because even though Jad was

able to decompile most of the logic in DateTime.class; Zelix's obfuscation caused Jad to

lose the value of the constant DATE TIME MASK when using it on line 12, and

generate a large block of static, invalid code starting at line 22. In the next two sections

(8.3 and 8.4), a Java anti-reversing exercise with a complete animated solution is

provided. In the solution, decompilation of Java bytecode is prevented through the use of

a class encryption obfuscation implemented by SandMark. Issues regarding the use of

this obfuscation technique are discussed in the animated solution.

67

Table 8.5. Jad decompilation of DateTime.class obfuscated by Zelix Klassmaster.

Listing of Jad decompilation of DateTime.class (abbreviated):

public class a 01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public static void main(String as[])

{
(new a()) .a ();

public void a()

{
boolean flag = c;
Date date = new Date();
System.out.println(String.format (a, new Object[]

date.toString ()}));
if(flag)

b = !b;

private static final String a;
public static boolean b;
public static boolean c;

static

{
"'?X@MA%O\005@@wY\001ZQw\\\016J\024#T\rK\024>N@\013Gy";
-1;
goto _L1

_L5:
a;
break MISSING_BLOCK_LABEL_116;

_L1:
JVM INSTR swap ;
toCharArray();
JVM INSTR dup ;

8.3 A Java Bytecode Code Anti-Reversing Exercise

Use Java bytecode anti-reversing tools such as ProGuard, SandMark, and

CafeBabe on the Java version of the Password Vault application to apply the anti-

reversing techniques Eliminating Symbolic Information and Obfuscating the Program

with the goal of making it more difficult to disable the trial limitation. Instead of

68

attempting to implement a custom control flow obfuscation to inhibit static and dynamic

analysis as was done in the solution to the Wintel machine code anti-reversing exercise,

apply one or more of the control flow obfuscations available in SandMark and observe

their impact by decompiling the obfuscated bytecode using Jad. Show that the Java

bytecode reversing solution illustrated in the animated tutorial in Section 5.4 can no

longer be carried out as demonstrated.

8.4 Animated Solution to the Java Bytecode Anti-Reversing Exercise

For instructional purposes, an animated solution to the exercise in Section 8.3 that

demonstrates the use of anti-reversing tools introduced in Section 8 was created using

Qarbon Viewlet Builder and can be viewed using Macromedia Flash Player. The tutorial

begins with the Java Password Vault application, ProGuard, SandMark, Jad, CafeBabe,

and Sun's Java JDK already installed on a Windows® XP machine. Fig. 8.2 contains an

example slide from the animated solution. The animated solution for the Java bytecode

anti-reversing exercise can be downloaded from the following location:

> Java Bytecode Anti-Reversing Animated Solution:

http://reversingproject.info/repository.php?fileID=8_4_l

Begin viewing the tutorial by extmctmgpassword_vaultjava_antireversing_exercise.zip

to a local directory and either runningpassword_vaultjava_antireversing_exercise.exe

which should launch the standalone version of Macromedia Flash Player, or by opening

the fi\epassword_vaultjava_antireversing_exercise_viewlet_swf.html in a Web browser.

69

http://reversingproject.info/repository.php?fileID=8_4_l
file://fi/epassword_vaultjava_antireversing_exercise_viewlet_swf.html

• SandMaik 3.4.0 (Mystiqi

File Help

Diff j View f Decompile f Quick Protect f Static Birthmark | Dynamic Birthmark

Dynamic Watermark Static Watermark Obfuscate Optimize

Algorithm: j Class Encrypter

Input File C:PassworcfVaultTrialJavd'obfuscatertPassworifVaiiltjar ^ i Browse

Output File iC:\PasswordVaultTrialJava\oWuscated\PasswordVaultEncrypted.jar

Encryption Key ||

7 ^
Specify an encryption key that will be used to encrypt and
decrypt the ['".class] files in the Java archive. SandMark will
bundle a new class in the output Java archive which
overrides Java's default class loader to support loading the
encrypted classes by first decrypting them.

Obfuscate Help

Class Encrypter encrypts class files and causes them to be decrypted at runtime.

Figure 8.2. Sample slide from the Java anti-reversing animated tutorial.

9 Reengineering and Reuse of Legacy Software Applications

As stated in the introduction, the literature points to a future where the standard

approach of "forward engineering" of software will be complimented with reverse

engineering to rediscover the architecture and design as the actual implementation is

being created. While any application that is greater than five years old can be considered

"legacy", in this section we assume a more severe condition where enough time has

passed such that an application has been enhanced and modified by several programmers,

over several years, who have since moved on. Most computer science programs of study

include object-oriented programming theory; this includes learning how to create

70

diagrams that illustrate the components of a system as well as their interactions during

execution. The hope is that these diagrams will be literally translated in to program code,

with a perfect correlation between the envisioned system and the implementation. For

small projects, it might be fairly easy to check for consistency between the envisioned

design, and what has been implemented, but this is not likely so for large projects. When

reverse engineering is continuously used during software development, the information

gained could be used to update the design diagrams at all levels of granularity [2]. The

challenge here is for the computer programmer to interpret the information gathered from

these reverse engineering tools. This will require the programmer to draw upon a skill-

set that ranges from low-level system concepts to high-level design. Unfortunately, the

future offers little help in undoing the mistakes of the past.

The problem of identifying concrete, reusable components within a software

system is especially difficult because as [7] states, "engineers do not know how to design

and build truly modular systems from scratch, let alone when starting from legacy code."

In [7], Weide and Hollingsworth's main thesis is that while reverse engineering of legacy

software is inherently intractable, some of us will inevitably find ourselves in a situation

where no other option is available because the cost of rewriting a large, complex software

system is prohibitive. In addition, should one choose to absorb the cost of rewriting a

system from scratch, there are no known software development techniques that can

guarantee a newly-designed system that will not need to be reengineered at some point

down the road.

71

The question of whether to reengineer or reuse components of a software system

most often arises in the context of large business or government organizations. Over time

the processes and procedures of a business or organization will inevitably be reflected in

the software systems that enable efficient, day-to-day operations [32]. Therefore, it is not

possible to change processes and procedures without adjusting or enhancing the software

systems that implement them. If good development practices were followed, a legacy

software application is typically composed of three layers [32]:

> Presentation Layer: components of a software system that accept input and

generate output using various types of hardware devices. Input and output can be

entered or analyzed by a human or another by another program.

> Business Logic Layer: implementation of some subset of the processes and

procedures of the business or organization that is relevant to the application. It is

unusual for the business logic of one application to implement all of the processes

and procedures. For example, the order processing and payroll applications are

not likely to have much business logic in common.

> Data Access Layer: this layer is responsible for servicing requests to store or

retrieve data on behalf of the presentation and business logic layers. The nature of

the code in this layer varies depending on the database technology being used.

Technology choices range from simple sequential files to industrial-strength

relational or hierarchical databases.

72

Fig. 9.1 illustrates the program architecture one would hope was used when when looking

to update, reengineer, or reuse a legacy software application.

Frontend —

Presentation Layer

Business Logic Layer

Data Access Layer

— Backend

Figure 9.1. Layers of a well-structured legacy software application.

Legacy applications that are not sufficiently componentized, such that their general

organization resembles the three layers, are not good candidates for reengineering and

reuse. More often than not, most software development projects in business are done

under fairly aggressive time constraints, therefore it it not uncommon to find an

interleaving of the layers—business logic in the presentation logic, and data access logic

in the business logic. The most widely accepted technique to reuse legacy application

components is that of Wrappering [32], where a new piece of code provides an interface

to a legacy application component or layer without requiring code changes to it. This

73

technique is employed even when the complete source code of a legacy application is

available for several reasons: (1) the number of lines of code in any one component or

layer is extensive and poorly documented—making the cost of understanding the code

well enough to make changes too high, (2) modifying the legacy application to be

reusable without a wrapper would require locating all of the application's dependencies so

that it can be recompiled and tested (3) application modernization, where a non-

traditional interface to the application such as XML in the case of Web or RESTful

services is desired.

Creating a wrapper to a legacy machine code application can be quite challenging

—especially if all of the source code for the application has been lost. Unless enough of

an application's source code remains such that it's possible to identify the names of

reusable entry points (procedures) and their I/O data structures, attempting to reuse the

application is haphazard at best. While it is possible to learn the names of entry points

that have been explicitly exported by an application in the case of a DLL, the names

don't indicate the layout of the expected I/O data structures. Probably the best way to

discover the entry points and I/O data structures in legacy machine code is to read the

source code of other applications which depend on it. For example, if a program a calls

procedure 9 of program (3 passing an I/O data structure 5, and a produces correct results,

there is good reason to believe that procedure 0 in program p can be reused by a third

program p using signature 8.

The COBOL programming language is most often associated with legacy

74

software applications. Typically, COBOL programs have a single entry point, which

makes the process of identifying reusable methods all but unnecessary because, instead of

declaring multiple entry points, it is general practice for legacy COBOL programs to

include functional discriminators in their I/O data structure(s) that indicate the desired

action(s) to be taken by the program on behalf of the caller. For example, a field called

"TRANSACTION-TYPE" with the possible values "DEP", "WTH", and "BAL" would

serve the same purpose in a COBOL program as the methods "doDeposit(8)",

"doWithdrawl(S)", and "getBalance(8)" would serve in a Java program.

01 BANK-ACCOUNT-INTERFACE.

02 TRANSACTION-TYPE-CODE PIC XXX.
83 DEPOSIT VALUE 'DEP ' . _—-—'
88 WITHDRAWL VALUE ' W T H 1 . — — "

88 BALANCE VALUE 'BAL ' . — —

02 AC COUNT-NUMBER PIC X (3 2) .

Figure 9.2. Mapping legacy functional discriminators to an object-oriented design.

Fig. 9.2 illustrates how a functional discriminator in a legacy COBOL data structure maps

to modern programming strategies such as object-oriented design.

In a real-world situation, we would be looking to reuse legacy components whose

machine code is the result of thousands of lines of high-level language statements

(COBOL) that implement a particular business process. Instead of going through the

error-prone process of rewriting the legacy component, which is likely decades old, we

wish to reuse and reengineer it so that it is easily consumed by modern programs and

BankAccount

doDeposit(...)

doWithdrawlf...)

getBalance(...)

75

interfaces. Since our focus is more on reuse and reengineering of legacy code at a basic

level, it's not necessary to encumber ourselves with a very large program in order to learn

strategies for reuse and reengineering. Therefore, for purposes of demonstration, an

example COBOL program SMPLCALC.cbl, which implements a simple calculator for

integer-only arithmetic, was written to simulate a potentially useful component found in

the business logic layer of a legacy business application. The source code for

SMPLCALC.cbl is given Table 9.1; the program has single entry point that operates on

the I/O data structure SMPCALC-INTERFACE.

Table 9.1. Sample business logic component to reuse and reengineer.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

**
** Simple COBOL program that performs integer arithmetic **
**
IDENTIFICATION DIVISION.
PROGRAM-ID. 'SMPLCALC.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 MSG-NUMERIC-OVERFLOW PIC X(25)

VALUE 'Numeric overflow occurred'.
77 MSG-SUCCESSFUL PIC X(22)

VALUE 'Completed successfully'.
LINKAGE SECTION.
* Input/Output data structure
01 SMPLCALC-INTERFACE.

02 SI-OPERAND-1 PIC S9(9) COMP-5.
02 SI-OPERAND-2 PIC S9(9) COMP-5.
02 SI-OPERATION PIC X.

88 DO-ADD VALUE '+'.
8 8 DO-SUB VALUE '-'.
88 DO-MUL VALUE '*'.

02 SI-RESULT PIC S9(18) COMP-3.
02 SI-RESULT-MESSAGE PIC X(128).

PROCEDURE DIVISION USING
BY REFERENCE SMPLCALC-INTERFACE.

MAINLINE SECTION.
* Perform requested arithmetic

INITIALIZE SI-RESULT SI-RESULT-MESSAGE
EVALUATE TRUE
WHEN DO-ADD

76

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

COMPUTE SI-RESULT = SI-OPERAND-1 + SI-OPERAND-2
ON SIZE ERROR

PERFORM HANDLE-SIZE-ERROR
END-COMPUTE

WHEN DO-SUB
COMPUTE SI-RESULT = SI-OPERAND-1 - SI-OPERAND-2
ON SIZE ERROR

PERFORM HANDLE-SIZE-ERROR
END-COMPUTE

WHEN DO-MUL
COMPUTE SI-RESULT = SI-OPERAND-1 * SI-OPERAND-2
ON SIZE ERROR

PERFORM HANDLE-SIZE-ERROR
END-COMPUTE

END-EVALUATE
* Successful return

MOVE MSG-SUCCESSFUL TO SI-RESULT-MESSAGE
MOVE 2 TO RETURN-CODE
GOBACK

** Handle numeric overflow and end the program **

HANDLE-SIZE-ERROR.
MOVE MSG-NUMERIC-OVERFLOW TO SI-RESULT-MESSAGE
MOVE 16 TO RETURN-CODE
GOBACK

END PROGRAM 'SMPLCALC'.

Looking at the source code for the COBOL program SMPLCALC.cbl, we can

easily determine the entry point name and the data layout of the I/O data structure.

However, even knowing the full details of the application's interface does not solve the

problem of making it easily reusable from Java or C because of the differences in the

language data type systems. For example, Packed Decimal (Computational-3) is a

numeric type that is commonly found in COBOL mainframe programs, but is not

directly supported in the Java and C/C++ languages. Even floating-point numbers can be

problematic because some COBOL compilers, including IBM's, do not use the standard

77

IEEE floating point representation; they instead use decimal floating point [44]. Without

detailing all the differences between the COBOL, Java, and C/C++ data models, it

suffices to say that writing custom code to convert between COBOL's data model and the

language we wish to invoke it from is error-prone and tedious and there are better

alternatives.

The problem of mating disparate data models so that new programs, written in

modern languages, can interact with legacy software systems, is far from new. There are

many commercial tools on the market that can import a COBOL data structure and

generate Java helper classes that a programmer can use to build to meet the legacy binary

interface using familiar getters and setters. A great many of these tools, including IBM's

Rational Application Developer (RAD) [33], leverage Sun Microsystems J2EE Connector

Architecture (JCA) [34] to provide a tightly coupled integration between a Java

application running in a J2EE container (server) and an enterprise application (likely

written in COBOL or PL/I) running on a mainframe. The JCA architecture requires a

good deal of middleware to exist between a calling Java application running in the J2EE

container and the COBOL application running on a legacy software system. While this

middleware is powerful because of its capability to marshall Java data into COBOL and

PL/I data, it cannot easily be reused for a local scenario where no server runtimes are

involved. Fig. 9.3 illustrates how the JCA architecture is used by commercial products to

enable legacy business applications to be accessed from Java applications running on

distributed J2EE application servers.

78

J2EE Server inframe

J Sim DleCpIri ilatnr r -
l >

Sm pi Calclnte trace Helper
1 k IT
T 1

Java to COBOL Marshaller

i —

J
c
A

J

^ ,
A

Transaction Server

SMPLCALC

^ JSimpleCalculator: Java application that provides a new
front-end to the SMPLCALC COBOL application.

> SmplCalcInterfaceHelper: helper class for building the
interface COBOL data structure, can be generated by a
commercial product such as RAD.

> Java to COBOL Marshaller: class library that implements
marshalling of Java data types to/from COBOL data types,
likely comes with a commercial J2EE server such as WebSphere
Application Server (WAS).

Figure 9.3. Example JCA implementation for accessing a legacy application.

A popular alternative to using the JCA architecture to reengineer and reuse legacy

applications is to implement a Service Oriented Architecture (SOA) [38]. When

migrating a legacy software system to an SOA, application programs that are candidates

for reuse are identified. Typically, candidate applications should be well structured such

that the business logic can be isolated, encapsulated, and made into reusable components.

These SOA components become capable of communicating without the tight and fragile

coupling of traditional binary interfaces because they are wrappered with a platform-

neutral interface such as XML and Web services. Once a business or organization has

created a collection of reusable components from stable and well tested code, it becomes

possible to quickly assemble new applications without having to rewrite and test the

79

underlying business logic.

When XML is used as envisioned, all data, both of type character and numeric are

represented as printable text, completely divorced from any platform-specific

representation or encoding. The net effect is that two entities or programs can interact

without having to know the data structures that comprise each other's binary interface.

Of course, the XML that is exchanged cannot be arbitrary, so industry standards such as

XML Schema (XSD) [39], [40] and Web Services Definition Language (WSDL) [41],

[42] were developed. XML Schema is used to formally describe XML documents, while

WSDL is used to describe services and the operations they support. Operations in Web

services are akin to public methods in the object-oriented programming paradigm. A

Web service is considered to be WS-I compliant [43], or generally interoperable, if it

meets many criteria, not the least of which is using XML documents for the input and

output of each operation. There are many criteria defined by WS-I that apply to a Web

service definition, but this particular facet, where XML is the interoperable interface of

choice, sets the stage for a meaningful exercise where the focus is on the activity of

making a component from a COBOL program that is reusable from Java using XML in a

light-weight, local environment.

In recent history, the ability to parse and generate XML documents has been

added to the COBOL language in many implementations including the Micro Focus and

IBM COBOL compilers and runtimes [37], [44]. XML parsing in COBOL is

accomplished through the use of the XML PARSE statement, which performs an event-

80

driven parse of an XML document. In a event-driven parse, the initiator registers a

handler which the XML parser invokes with each XML construct found in the document.

For example, the start and end of an XML element would be reported as two separate

events. XML generation in COBOL is accomplished through the use of the XML

GENERATE statement, which, given a COBOL data structure and an output buffer, will

generate XML that has the same hierarchical organization as the data structure [37, 44].

By default, the XML GENERATE statement will form XML element and attribute names

using the name of each member in the COBOL data structure. This can be less than ideal

in circumstances where data structure members have cryptic names that don't conform to

the spirit of XML where each XML element and attribute is given a name that describes

its content. Fortunately, Micro Focus COBOL provides the capability to assign custom

XML element and attribute names to each data structure member, which allows for

defining an XML Schema that has meaningful element and attribute names [37].

In the exercise which accompanies this section, we are asked to create a language-

neutral XML interface to the "legacy" SMPCALC.cbl application program and invoke it

from a Java program which incidentally makes it reusable to other Java programs. To

describe an XML interface to the legacy COBOL program so that other programs may

consume it, an XML Schema must be created; this can be done with a tool that can

generate XML Schema from a COBOL data declaration, or by hand using an XML editor.

Once an XML interface has been described using XML Schema, it is necessary to

implement XML marshalling layers between the calling Java program and the legacy

81

COBOL program. In the example exercise, the XML marshalling layer for each program

is implemented in the target language itself. So that the Java program can generate and

consume XML based on the XML Schema that describes the interface to the COBOL

program, we employ the Java Architecture for XML Binding (JAXB) [35]. JAXB

facilitates the conversion of Java objects to XML and vice versa. Sun's Java JDK

includes a command-line utility xjc which generates Java marshalling code from an XML

Schema—making it quite easy to write a Java program which consumes and generates

XML based on an XML Schema. While generation of XML is nicely handled in COBOL

by the XML GENERATE statement, consuming XML involves coding an event handler

for the XML PARSE statement. Of course, complete code for both the Java and COBOL

XML marshalling layers is included in the solution to the exercise, so if COBOL is a

foreign language to you, there's no need for concern. Once the XML marshalling layers

are in place, there's one more loose end that needs to be tied up; and that is to figure out

how to pass XML documents between the two layers. Since we are in a local scenario,

TCP/IP is not an option, therefore a thin Java Native Interface (JNI) layer is needed

through which the Java and COBOL marshalling layers can exchange XML; note that the

COBOL XML marshalling layer invokes the legacy COBOL application. Fig. 9.4

illustrates the program architecture for the exercise.

82

Java

ISirnpleCalculator

JSimpleCalculator

longdoAdd(int, int)

longdoSub(int, int)

longdoMul(int, int)

JAXB

X M L i

^XML

1

JNI

XML
^-

XML

XML

PARSE

&

GEN.

SMPLCALC

88 DO-ADD
88 DO-SUB
88 DO-MUL

| COBOL

Figure 9.4. Architecture for legacy application reengineering and reuse from Java.

In order to try out the code in this section and complete the exercise that

accompanies it, a COBOL compiler and runtime environment are needed. The COBOL

programs in this section, and in the solution to the exercise which accompanies it, were

written, compiled, and run using a student version of Micro Focus Net Express [37]. At

the time of this writing, no reasonably functional open source COBOL compiler was

available that could compile, link, and run even the most simple COBOL program given

in this section; this may have to do with the fact that COBOL remains a very lucrative

enterprise for many businesses, so there is little interest in giving away implementations

to the open source community. For example, the COBOL for GCC project has not made

significant progress yet on the code generation part of the compiler [36]. When and if an

open source COBOL compiler gets off the ground, it will be interesting to see what

features of the commercial COBOL compilers are implemented.

83

9.1 Legacy Software Reengineering and Reuse Exercise

Provide a command-line (or graphical) interactive Java front-end to the legacy

COBOL application SMPLCALC.cbl by implementing the program architecture

illustrated in Fig. 9.4. Before starting the exercise, download and extract the following

archive file located here http://reversmgproject.info/repositoiy php?fileID=9_l_l.

Follow these steps to complete the exercise:

1) Locate the interface data structure for SMPLCALC.cbl in the copybook (source
include file) SMPLCALC.cpy. There is only one data structure in the copybook.

2) Create an XML Schema which represents all of the data in the SMPLCALC-
INTERFACE COBOL data structure. Instead of writing this by hand, you can use
the Micro Focus Net Express CBL2XML wizard [37].

3) Write a Java interface ISimpleCalculator.java for three computation types supported
by SMPLCALC.cbl using appropriate method signatures:
a) long doAdd(int, int) throws java.lang.ArithmeticException.
b) long doSubtract(int, int) throws Java.lang.ArithmeticException
c) long doMultipy(int, int) throws Java.lang.ArithmeticException

4) Write a Java class JSimpleCalculator.java that implements the interface defined in
ISimpleCalculator.java and provides a user interface for:
a) Specifying which computation (add, sub, mul) is desired.
b) Specifying the operands to the computation.
c) Displaying the result of the computation (can be an error).

5) Use the Java command-line utility xjc, in combination with the XML Schema
created in Step 2, to generate Java to XML marshalling code (JAXB). Update
JSimpleCalculator.java to call this marshalling code.

84

http://reversmgproject.info/repositoiy

6) Write a small C/C++ JNI program JavalCblXmlBridge.cpp which exports a method
"Java2SmplCalc" which:

a) Invokes XML2CALC.cbl (see Step 7), passing the XML document received
from JSimpleCalculator.java.

b) Returns the XML document generated by XML2CALC.cbl (see Step 7) on
return from SMPLCALC.cbl to JSimpleCalculator.java.

7) Write a COBOL program XML2CALC.cbl which:

a) Marshalls XML received from the Java2CblXmlBridge.cpp, based on the XML
Schema created in Step 2, into SMPLCALC-INTERFACE.

b) Invokes SMPLCALC.cbl, passing SMPLCALC-INTERFACE by reference.

c) Marshalls SMPLCALC-INTERFACE back to XML before returning to
Java2CblXmlBridge. cpp.

8) Compile XML2CALC.cbl and link it with the machine/object code for
SMPLCALC.cbl (SMPLCALC.obj).

a) To simulate a situation where only partial source code for an application is
available, do not recompile SMPLCALC.cbl; use the object file (machine code)
that comes with this exercise instead.

9) Create a DLL that can be loaded an used by JSimpleCalculator.java by compiling
and linking Java2CblXmlBridge.cpp with the object code for XML2CALC.cbl.

10) Update JSimpleCalculator.java to use the XAC-generated marshalling code to
send/receive XML through the JNI method defined in Step 8 and display the results
of the computations performed downstream by SMPLCALC.cbl.

85

9.2 Legacy Software Reengineering and Reuse Exercise Solution

This section gives a solution to the exercise given in Section 9.1. The details of

the solution are organized according to the steps of the exercise. Software requirements

to build and test the solution include: Sun's Java JDK SE V6, Microsoft Visual C++

Studio Express 2008, and Micro Focus Net Express v5.1 (COBOL).

Most of the source listings in this section are abbreviated, and some of the steps

are skipped. The complete source and binaries for he solution can be downloaded from

http://reversingproject.info/repository.php?fileID=9_2_l.

! 1) Locate the interface data structure for SMPLCALC.cbl in the copybook (source
include file) SMPLCALC.cpy. There is only one data structure in the copybook.

The interface data structure for SMPLCALC.cbl is located in SMPLCALC.cpy and is

named SMPLCALC-INTERFACE (see Table 9.2). COBOL data structures begin with a

level 01 declaration and are usually hierarchical but can be elementary.

Table 9.2. Interface data structure SMPLCALC-INTERFACE in SMPLCALC.cpy.

01
02
03
04
05
06
07
08
09
10

* I
01
nput/Output data structure
SMPLCALC-INTERFACE.
02
02
02

02
02

SI-OPERAND-1 PIC S9(9) COMP-5.
SI-OPERAND-2 PIC S9(9) COMP-5.
SI-OPERATION PIC X.
88 DO-ADD VALUE '+'.
88 DO-SUB VALUE '-'.
8 8 DO-MUL VALUE '*'.
SI-RESULT PIC S9(18) COMP-5.
SI-RESULT-MESSAGE PIC X(128).

86

http://reversingproject.info/repository.php?fileID=9_2_l

2) Create an XML Schema which represents all of the data in the SMPLCALC-
INTERFACE COBOL data structure. Instead of writing this by hand, you can use
the Micro Focus Net Express CBL2XML wizard [3 7].

The CBL2XML wizard in Micro Focus Net Express conveniently generates an XML

Schema from a COBOL data structure. The result of using SMPLCALC.cpy as input to

the CBL2XML wizard is given in Table 9.3.

Table 9.3. XML Schema generated from the COBOL data structure.

<?xml version="l.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2 0 01/XMLSchema"

elementFormDefault="qualified">
<element name="SMPLCALC-INTERFACE">
<complexType>
<sequence>
<element name="SI-OPERAND-l">
<simpleType>
<restriction base="integer">
<totalDigits value="9" />

</restriction>
</simpleType>

</element>
<element name="SI-OPERAND-2">
<simpleType>
<restriction base="integer">
<totalDigits value="9" />

</restriction>
</simpleType>

</element>
<element name="SI-OPERATION">
<simpleType>
<restriction base="string">
<enumeration value="+" />
<enumeration value="-" />
<enumeration value="*" />

</restriction>
</simpleType>

</element>
<element name="SI-RESULT">
<simpleType>
<restriction base="integer">
<totalDigits value="18" />

</restriction>
</simpleType>

</element>

87

http://www.w3.org/2

27
28
29
30
31
32
33
34
35
36
37

<element name="SI-RESULT-MESSAGE">
<simpleType>
<restriction base="string">
<maxLength value="128" />

</restriction>
</simpleType>

</element>
</sequence>

</complexType>
</element>

</schema>

4) Write a Java class JSimpleCalculator.java that implements the interface defined in
ISimpleCalculator.java and provides a user interface for:
a) Specifying which computation (add, sub, mul) is desired.
b) Specifying the operands to the computation.
c) Displaying the result of the computation (can be an error).

There is a great deal of flexibility in this part of the exercise. Some examples of

the types of user interfaces that can be implemented include: command-line interactive

(console-based), graphical, Java servlet (Web-based). A command-line interactive

interface was implemented for the solution. A screen capture of the interface is given

Fig. 9.5. Notice that a debugging mode is available to trace the various steps in the

process of exchanging XML between the Java and COBOL XML marshalling layers.

88

**
** Program: Java Front-end to COBOL Calculator **
** Purpose: Demonstrate reengineering and reuse **
** of a COBOL program from Java by **
** establishing an XML bridge leveraging **
** JAXB, JNI, and COBOL XML support. -*
** Author: Teodoro Cipresso **
** tcipress@hotmail.com **
**

Select a task from the following menu:

(1) Addition
(2) Subtraction
(3) Multiplication
(4) Toggle Debug ON
(5) Quit Program

Specify selection: 3

Specify integer operand #1: 12

Specify integer operand #2: 12

[***] COBOL multiplication result: 144

Figure 9.5. Console-based Java interface to the legacy COBOL program.

5) Use the Java command-line utility xjc, in combination with the XML Schema created
in Step 2, to generate Java to XML marshalling code (JAXB). Update
JSimpleCalculator.java to call this marshalling code.

The xjc command-line utility generates two types of artifacts for each global (top

level) element in an XML Schema: (1) Java classes that expose getters and setters for the

data contained in instances of the XML Schema (XML documents), (2) Java classes that

serve as metadata for the JAXB XML marshalling engine. In the solution archive file,

the two classes generated by JAXB are: SmplCalcJaxbFactory.java (getters and setters)

and SmplCalcJaxbMarshaller.java (JAXB XML marshalling metadata). Note these are

not the default class names generated by xjc.

89

mailto:tcipress@hotmail.com

To cleanly integrate the JAXB marshalling with JSimpleCalculator.java,

SmplCalcJaxbMarshaller.java, which encapsulates the interaction with the JAXB, was

created. Table 9.4 gives an abbreviated listing of this class.

Table 9.4. Partial listing of SmplCalcJaxbMarshaller.java interaction with JAXB.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

private static JAXBContext jaxbContext = null;
private static Marshaller marshaller = null;
private static Unmarshaller unmarshaller = null;

static
{
try
{
jaxbContext = JAXBContext.newlnstance(SMPLCALCINTERFACE.class) ;
marshaller = jaxbContext.createMarshaller();
unmarshaller = jaxbContext.createUnmarshaller();

} catch (JAXBException _je) {...}

public static String serializeXML(SMPLCALCINTERFACE request)
16 {
17
18
19
20
21
22
23
24
25
26
27
28
29

ByteArrayOutputStream xmlBytes = new ByteArrayOutputStream();
try
{

marshaller.marshal(request, xmlBytes);
} catch (JAXBException _je) {...}
String xmlDoc = new String(xmlBytes.toByteArray());
return xmlDoc;

public static SMPLCALCINTERFACE loadXML(String xmlDoc)
{
SMPLCALCINTERFACE response = null;
ByteArraylnputStream xmlBytes = new

ByteArraylnputStream(xmlDoc.getBytes ());
30
31
32
33
34
35

try
{
response = (SMPLCALCINTERFACE)unmarshaller.unmarshal(xmlBytes);

} catch (JAXBException _je) {...}
return response;

Next we need to update the add, subtract, and multiply methods in

JSimpleCalculator.java to use SmplCalcJaxbMarshaller.java to generate and consume

90

XML in preparation to use the JNI XML bridge to the legacy COBOL application. Table

9.5 contains an abbreviated listing of the updated to JsimpleCalculator.java. Note that

the call to method smplCalcXmllnterface is commented out. This is a call to the JNI

XML bridge which will be implemented in a later step.

Table 9.5. Updates to JSimpleCalculator.java in support of JAXB marshalling.

01
02
03

public long doAddfint _lstOp, int _2ndOp)

{
SMPLCALCINTERFACE addResult = invokeXmllnterface("+", IstOp,

2ndOp);
04
05
06
07

return addResult.getSIRESULT().longValue();

public SMPLCALCINTERFACE invokeXmllnterface(String calcType, int
_lstOp, int _2ndOp)
08: {
09: SMPLCALCINTERFACE inputData = new SmplCalcJaxbFactory().
createSMPLCALCINTERFACE();
10: inputData.setSIOPERATION(calcType);
11: inputData.setSIOPERANDl(Biglnteger.valueOf(_lstOp)) ;
12: inputData.setSIOPERAND2(Biglnteger.valueOf(_2ndOp));
13: inputData.setSIRESULTMESSAGE("");
14: inputData.setSIRESULT(Biglnteger.valueOf(0));
15: String inputXml = SmplCalcJaxbMarshaller.serializeXML(inputData);
16: // TODO JNI: String outputXml = smplCalcXmllnterface(inputXml);
17: SMPLCALCINTERFACE outputData = SmplCalcJaxbMarshaller.
loadXML(outputXml);
18: return outputData;
19: }

6) Write a small C/C++ JNI program Java2CblXmlBridge.cpp which exports a method
| "Java2SmplCalc" which:

a) Invokes XML2CALC.cbl (see Step 7), passing the XML document received from
JSimpleCalculator.java.

b) Returns the XML document generated by XMLlCALC.cbl (see Step 7) on
return from SMPLCALC.cbl to JSimpleCalculator.java

Sun's Java SDK includes the command-line utility javah that generates

appropriate C/C++ header files for a native method declaration in a Java class. The

91

generated header file will contain a function prototype that reflects the fully qualified

name and signature of the method. Using the function prototype, it is the responsibility

of the programmer to write a C/C++ method that conforms to it and interacts properly

with the JVM. Please note that garbage collection does not apply to any memory

allocated by the native code, so be sure to free it.

To generate the JNI header file, we must first declare a native method in

JsimpleCalculator.java that we wish to implement in C/C++. In addition, we must also

indicate the name of the DLL Java will need to load in order to call it. Table 9.6 contains

the needed additions to JsimpleCalculator.java to declare the native method. Note that

on the System.loadLibrary call, the file extension of the DLL file is not specified.

Table 9.6. Example native method declaration for the JNI XML bridge.

01: public class JSimpleCalculator implements ISimpleCalculator
02: {
03: native String smplCalcXmllnterface(String xmldoc);
04: static
05: {
06: System.loadLibrary("Java2CblXmlBridge") ;
07: }
08: ...
09: }

When using the javah command-line utility, keep in mind that it operates on

*.class files instead of *.java files; this is because the Java reflection APIs are used to get

the qualified name and signature of the native method declaration instead of having to

parse the source file. To generate a C/C++ header file from the JSimpleCalculator.class

file, issue the command "javah -jni

info.reversingproject.jsimplecalculator.JSimpleCalculator. " Table 9.7 gives the source

92

for the JNI program Java2CblXmlBridge.cpp, which implements the JNI method

described in the generated header file.

Table 9.7. Example implementation of the Java to COBOL JNI XML bridge.

01: #include "package_JSimpleCalculator.h"
02: #include "cobcall.h"
/*
* Class : info_reversingproject_jsimplecalculator_JSimpleCalculator
* Method: smplCalcXmllnterface
* Signature: (Ljava/lang/String;)Ljava/lang/String;
*/

03: jstring JNICALL
Java_info_reversingproject_j simplecalculator__JSimpleCalculator_smplCalc
Xmllnterface (JNIEnv *env, jobject parent_obect, jstring xml_doc)
04
05
06
07
08
09
10

{
// Get input XML document passed from Java
jboolean iscopy;
jstring output_xml;
char *xml_buffer = NULL;
char *xml_buffer_ptr = NULL;
const char *xml_input = (*env)->GetStringUTFChars(env, xml_doc,

Siscopy);
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

int xml_len = strlen(xml_input);
// Allocate XML I/O buffer and copy input XML
xml_buffer = (char*)malloc(32767);
memset(xml_buffer, 0x00, 32767); // initialize
memcpy(xml_buffer, xml_input, xml_len);
// Free JNI memory used for MBCS to SBCS conversion
(*env)->ReleaseStringUTFChars(env, xml_doc, &iscopy);
// call COBOL to XML marshalling layer, passing XML I/O buffer
cobinitO; // Initialize Micro Focus COBOL runtime
XML2CALC(&xml_len, xml_buffer); // Call COBOL
// Null terminate XML returned from COBOL
xml_buffer_ptr = xml_buffer;
xml_buffer_ptr += xml_len;
*(xml_buffer_ptr) = 0x00;
// Allocate UTF version of XML to return to Java
output_xml = (*env)->NewStringUTF(env, xml_buffer);
// Free XML I/O buffer
free(xml_buffer);
// Return XML generated by COBOL as Java String
return output_xml;

93

7) Write a COBOL program XML2CALC.cbl which:
a) Marshalls XML received from the Java2CblXm.lBridge.cpp, based on the XML

Schema created in Step 2, into SMPLCALC-INTERFACE.
b) Invokes SMPLCALC.cbl, passing SMPLCALC-INTERFACE by reference.
c) Marshalls SMPLCALC-INTERFACE back into XML document before returning

to Java2CblXmlBridge.cpp.

Using the recently added XML support in COBOL [37, 44], parsing and

generation of XML is fairly straight-forward. Two statements in the COBOL language,

XML PARSE and XML GENERATE, are used to implement the program

XML2CALC.cbl. Note that the XML GENERATE statement only allows assignment of

non-default XML element names to data structure members when reading or writing from

an XML file. Since we are working with XML in a stream, the XML Schema defined in

the solution to Step 2 uses the default XML element names generated by the Micro Focus

Net Express CBL2XML wizard. Table 9.8 gives the source code for XML2CALC.cbl, the

XML layer to the legacy COBOL application.

94

http://Java2CblXm.lBridge.cpp

Table 9.8. Implementation of a COBOL XML layer to the legacy application.

$set preprocess(prexml) o(foo.pp) warn endp
K i t *

** Wrapper program that provides an XML interface to SMPLCALC **
i t *

IDENTIFICATION DIVISION.
PROGRAM-ID. 'XML2 CALC' .

DATA DIVISION.
WORKING-STORAGE SECTION.
* Input/Output data structure
01 SMPLCALC-INTERFACE.

02 SI-OPERAND-1 PIC S9(9) COMP-5.
02 SI-OPERAND-2 PIC S9(9) COMP-5.
02 SI-OPERATION PIC X.

8 8 DO-ADD VALUE '+'.
8 8 DO-SUB VALUE
8 8 DO-MUL VALUE '*'.

02 SI-RESULT PIC S9(18) COMP-5.
02 SI-RESULT-MESSAGE PIC X(128).

* XML parsing state
01 XML-PARSE-STATE.

02 CURR-ELE-NAME PIC X(256).
02 CURR-ELE-CONT PIC X(256).

LINKAGE SECTION.
01 XML-DOC-LEN PIC S9(9) COMP-5.
01 XML-DOC-TXT PIC X(32767).
PROCEDURE DIVISION USING XML-DOC-LEN XML-DOC-TXT.

MAINLINE SECTION.
* Parse XML into SMPLCALC-INTERFACE

XML PARSE XML-DOC-TXT(1:XML-DOC-LEN)
PROCESSING PROCEDURE XML-HANDLER

END-XML
* Invoke legacy COBOL application SMPLCALC

CALL 'SMPLCALC USING SMPLCALC-INTERFACE
* Generate XML from SMPLCALC-INTERFACE

XML GENERATE XML-DOC-TXT FROM SMPLCALC-INTERFACE
COUNT IN XML-DOC-LEN

END-XML
* Return to client program

GOBACK

* + +

* | XML event handler for marshalling XML into COBOL data I
* + +
XML-HANDLER.

EVALUATE XML-EVENT
WHEN 'START-OF-ELEMENT'
MOVE XML-TEXT TO CURR-ELE-NAME

WHEN 'CONTENT-CHARACTERS'
EVALUATE CURR-ELE-NAME

95

50
51
52
53
54
55
56
57
58
59
60
61

WHEN 'SI-OPERAND-1'
MOVE FUNCTION NUMVAL(XML-TEXT) TO SI-OPERAND-1

WHEN 'SI-OPERAND-2'
MOVE FUNCTION NUMVAL(XML-TEXT) TO SI-OPERAND-2

WHEN 'SI-OPERATION'
MOVE XML-TEXT TO SI-OPERATION

END-EVALUATE
WHEN 'END-OF-ELEMENT'

INITIALIZE CURR-ELE-NAME
END-EVALUATE

END PROGRAM 'XML2CALC.

\ 10) Update JSimpleCalculator.java to use the X/C-generated marshalling code to

send/receive XML through the JNI method defined in Step 8 and display the results

| of the computations performed downstream by SMPLCALC.cbl.

To begin using the JNI XML bridge, create or uncomment a line in your code that

corresponds to the bolded line in Table 9.5. Essentially, code a call to method

Java2CblXmlBridge.smplCalcXmlInterface(inputXmlDoc), passing the JAXB generated

XML document, to invoke the legacy COBOL application SMPLCALC.cbl through JNI

and the XML layers. Table 9.9 lists the results of running the complete solution code for

the exercise with debug tracing turned on.

Table 9.9. Example run of the solution code with debug statements turned on.

01
02
03
04
05
06
07
08
09
10
11
12

**
** Program: Java Front-end to COBOL Calculator **
** Purpose: Demonstrate reengineering and reuse **
** of a COBOL program from Java by **
** establishing an XML bridge leveraging **
** JAXB, JNI, and COBOL XML support. **
** Author: Teodoro Cipresso **
** tcipress@hotmail.com **
**

Select a task from the following menu:

96

mailto:tcipress@hotmail.com

(1) Addition
(2) Subtraction
(3) Multiplication
(4) Toggle Debug OFF
(5) Quit Program

Specify selection: 3

Specify integer operand #1: 16

Specify integer operand #2: 32

[D] JSimpleCalculator.doMultiply(16, 32)

[D] JSimpleCalculator.invokeXmllnterface(*, 16, 32)

[D] SmplCal c JaxbMar sha H e r .serial izeXML ()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31: [D] SmplCalcJaxbMarshaller.serializeXML().xmlDoc[<?xml
version="l.0" encoding="UTF-8" standalone="yes" 7XSMPLCALC-
INTERFACEXSI-OPERAND-l>16</SI-OPERAND-lXSI-OPERAND-2>32</SI-OPERAND-
2><SI-OPERATION>*</SI-OPERATIONXSI-RESULT>0</SI-RESULTXSI-RESULT-
MESSAGEX/SI-RESULT-MESSAGEX/SMPLCALC-INTERFACED
32:
33: [D] JSimpleCalculator.invokeXmllnterface(): Before call to
Java2CblXmlBridge
34:
35: [D] JSimpleCalculator.invokeXmllnterface(): After call to
Java2CblXmlBridge
36:
37: [D] SmplCalcJaxbMarshaller.loadXMLO .xmlDoc[<SMPLCALC-
INTERFACEXSI-OPERAND-l>16</SI-OPERAND-lXSI-OPERAND-2>32</SI-OPERAND-
2><SI-OPERATION>*</SI-OPERATIONXSI-RESULT>512</SI-RESULTXSI-RESULT-
MESSAGE>Completed success fully</SI-RESULT-MESSAGEX/SMPLCALC-
INTERFACE>]
38:
39: [***] COBOL multiplication result: 512

97

10 Identifying, Monitoring, and Reporting Malware

Malware describes a category of software that for one reason or another does not

fit the description of a program that always operates in a way that benefits the user [5J.

Of course, those of us who have ever used software might contend that this definition of

malware will cause programs that we use every day to be categorized as malware. For

example, the word processor used to write this paragraph has crashed more than once

during the writing of this paper, and, in that regard, it's not acting in a way that benefits

the user. To tighten the definition of malware, let's qualify it a bit: the malicious or

annoying behaviors of malware are intentional, not the result of one or more bugs. There

are currently five types of malware that affect computer systems [5] [21]:

> Viruses: a virus is malware that requires some deliberate action to help it spread.

For example, a user downloading and installing an infected program that in turn

infects emails sent by the user.

> Worms: a worm is similar to a virus but can spread by itself over computer

networks. Worms have superseded viruses as the popular choice of hackers.

> Trojan horses: a Trojan horse is software that has hidden and unadvertised

functionality that occurs during normal use.

> Backdoor: a backdoor is a vulnerability purposely embedded in software that

allows an attacker to connect to the users machine with malicious intent.

> Rabbit: a rabbit is a program that exhausts system resources. Types of resources

that can be exhausted include memory, disk space, CPU time.

98

To experiment with most of the types of malware listed here is dangerous. Therefore, if

one decides to try one's hand at analyzing real-life malware, using the machine code and

bytecode reversing techniques demonstrated in this paper, one should do so in a carefully

prepared environment. One should not install any malware on a computer that must

remain in operating condition. Worms and backdoors can be especially dangerous

because they can propagate to other systems on computer networks. Be aware that using

virtualization tools such as VMware to create secondary operating system images on

which to install malware can still result in the infection of the primary operating system,

especially if the VMware-hosted image has connectivity enabled.

The goal of this section is to help you become familiar with using software tools

to identify, monitor, report, and securely delete software that you suspect to be malicious.

Since it's not practical to ask that you install a virus, worm, backdoor, or rabbit on your

machine, we are left with the possibility of a guaranteed benign software Trojan. It's

important to note here that malware usually isn't of just one type; for example, 3 of the

top 10 malicious codes families reported in 2008 were Trojans with a backdoor

component [45]. It turns that focusing on software Trojans is appropriate because as

Symantec's 2009 Global Internet Security Threat Report [45] states, "Trojans made up 68

percent of the volume of the top 50 malicious code samples reported in 2008", and "Five

of the top 10 staged downloaders in 2008 were Trojans."

For the vast majority of us, the story of the Trojan horse from antiquity is quite

familiar. Essentially, the Greeks, in a 10-year siege against the city of Troy, devised a

99

brilliant plan of putting 40 of their best soldiers into the body of a large wooden horse

while the rest of the army sailed away out of sight. The Trojans, assuming that the

Greeks had given up, pulled the horse into their city as a trophy of their victory. As night

fell over the city of Troy, the Greek army sailed back to shore. Meanwhile, the soldiers in

the Trojan horse silenced some guards and opened the gates—allowing the Greek army to

flood in and take the city by surprise.

So what does all this have to do with software? Not too surprising, a Trojan

software program is one that is not entirely what it seems. For example, imagine a

program is offered for free on the Internet that claims to be able to convert audio files

between different formats. The program fits the needs of many, and is definitely the right

price, so it has a large install base. What users of the program are not told is that while

the program is performing its advertised functions, it will perform other annoying or

malicious tasks in the background such as: scanning the system for sensitive information

and uploading it to a rogue site, affecting the stability and performance of the system by

doing repeated expensive operations.

In 1996, Mark Russinovich founded a company called "Winternals Software"

where he was the chief software architect on a comprehensive suite of tools for

diagnosing, debugging, and repairing Windows® systems and applications [46]. Mark's

company has since been purchased by Microsoft and his suite of tools have been

rebranded "Windows Sysinteraals" and are offered for free on Microsoft Technet. An

example of one of the more powerful tools in the Sysinternals suite is the Process

100

Monitor. The Process Monitor can capture detailed information about any running

process in a Windows® system including: filesystem, registry, and network activity. Just

the Process Monitor alone is helpful in analyzing the behavior of an application when

making the determination of whether or not it is malicious. As an aside, Mark's story is

an interesting one because he is recognized as a true expert on the internals of Windows®

even though he did not participate in its development—a true testament to what can be

learned about software through reverse engineering. At the time of this writing, the

Sysinteraals suite contained 66 different utilities, but we'll focus on the most useful one

in this context of analyzing the behavior of malware: Process Monitor. In the exercise

that accompanies this section, it is recommended that you use Process Monitor to

complete it. If you have the opportunity to experiment with other tools in the

Sysinternals suite, you are encouraged to do so. The following description of Process

Monitor is given on the Windows Sysinternals web site [46]:

"Process Monitor is an advanced monitoring tool for Windows® that shows
real-time file system, Registry and process/thread activity. It combines the
features of two legacy Sysinternals utilities, Filemon and Regmon, and adds
an extensive list of enhancements including rich and non-destructive filtering,
comprehensive event properties such session IDs and user names, reliable
process information, full thread stacks with integrated symbol support for
each operation, simultaneous logging to a file, and much more. Its uniquely
powerful features will make Process Monitor a core utility in your system
troubleshooting and malware hunting toolkit. "

Fig. 10.1 contains a capture of a Process Monitor session where the filesystem activity of

the Password Vault application is recorded. When using Process Monitor, you can

selectively monitor registry, filesystem, network, and thread activity.

101

File Edit

£? H
Event Filter Tools Options Help /

i ^ m E> i v A ® i 1
Process Name PIP |; Operation

1 PasswordVault. exe
IPasswordVault.exe

63 PasswordVault. exe
IPasswordVault.exe
jPasswordVault.exe

63 PasswordVault. exe
JPasswordVault.exe
JPasswordVault.exe
JPasswordVault.exe
JPasswordVault.exe
1 Pass wordVault. exe
] Pass wordVault. exe
JPasswordVault.exe
JPasswordVault.exe
IPasswordVault.exe

5072 0JRP_MJ
5072 y*FAST 10.
5072 EMRP_MJ.
5072 0URP_MJ_
5072 yj jRP_MJ
5072 0URP_MJ
5072 0JRP_MJ
5072 0URP_MJ_
5072 0URP_MJ_
5072 &.IRP_MJ_
5072 BURP_MJ
5072 0URP_MJ
5072 @URP_MJ
5072 0JRP_MJ
5072 gklRP_MJ

.CREATE C:\PasswordVaultTrialCpp\user01

.QUE RY_... C APasswordVauItT rialCpp\user01

.READ CAPasswordVaultTrialCpp\user01
CLEANUP CAPasswordVaultTrialCpp\user01
.Q UE RY_... C APasswordVauItT rialCpp
CR EAT E C: \PasswordVaultT rialCpp\user01
.CREATE C APasswordVauItT rialCpp
CLEANUP C APasswordVauItT rialCpp
.CLOSE C APasswordVauItT rialCpp
WRITE C APasswordVauItT rialCpp\user01
.CLEANUP CAPasswordVauItTrialCpp\user01
CLO SE C APasswordVauItT rialCpp\user01
READ C: /:

CLEANUr
CL0SE Save the vault file.

;dat'
d a t |
dat p.
dat| :

''&..
m

datss*:

dat
dat
dat

| [Showing 49 of 36,344 events {0.13%) Backed by page file
JU

^4

Figure 10.1. Process Monitor session for the Password Vault application.

Most of the malicious operations carried out by Trojans can be detected using

Process Monitor, including those that contain Backdoors. Of course, Process Monitor

itself doesn't identify malware, it simply reports what a process is doing. With a little bit

of ingenuity, one can identify activities that don't seem to fit with the advertised

functionality of a program. For example, a program that accesses registry keys, files, or

network locations that are unrelated to it, is probably malicious. It's common practice

these days for users to download free software from the Internet, and because we've been

convinced that open-source software, which is sometimes confused with free software,

should have the fewest number of vulnerabilities, we do it without much afterthought.

Incidentally, the data on the number of vulnerabilities found in popular Internet browsers

102

file://C:/PasswordVaultTrialCpp/user01
file:///PasswordVaultT

does not support this belief. [45] reports that "Mozilla browsers were affected by 99 new

vulnerabilities in 2008, more than any other browser; there were 47 new vulnerabilities

identified in Internet Explorer, 40 in Apple Safari, 35 in Opera™, and 11 in Google®

Chrome." It seems counter-intuitive that an open-source browser would have twice as

many security holes than a closed-source browser like Internet Explorer. Mozilla is not

malware, but it's interesting to note that in the case of software, open-source doesn't

guarantee security. Becoming familiar with the Windows® Sysinternals suite can help

you evaluate whether the software on your Windows® machine is acting in your best

interest.

If you suspect a particular program to be malware, it can be submitted online to a

service called ThreatExpert [47]. ThreatExpert is a Web-based tool that supports

submission of software executables that are to be evaluated against an on-line malware

database. The tool analyzes the instruction sequences in submitted executables and

attempts to match them against those of known malware. Matching against existing

malware is just one part of ThreatExpert's automated engine; the service actually tries to

execute suspected malware in an isolated environment in order to perform heuristic

analysis of its actions. An example of a report generated by ThreatExpert for a

particularly dangerous piece of malware is shown in Fig. 10.2. The figure contains only

the top-level summary of the report whereas the full report contains much more detail,

such as filesystem, memory, registry, network and other activity. Note that all of the

malicious behaviors of the submitted executable could have been learned by

103

m ThreatExpert
Submission Summary:

a Submission detai ls:

• Submission received: 2 May 2009, 13:53:25

• Processing t ime: 6 min 33 sec

• Submit ted sample:

File MDS: 0xD5D9730AF3DE7006C9940791E96B20CE

File SHA-1 : OxC4AD816CC3AD6206735E24903DC58729AAB6B388

Filesize: 406,771 bytes

Alias:

Virus,Win32.Parite.b • [Kaspersky Lab]

Virus,Win32,Parite • [Ikarus]

Summary of the findings:

What 's been found

A network-aware worm that uses known exploit(s) in order to
repl icate across vulnerable networks.

MS04-011 : LSASS Overflow exploit - replication across TCP 445
(common for Sasser, Bobax, Kibuv, Kongo, Gaobot, Spybot , Randex,
o ther IRC Bots).

: Replication across networks by exploiting weakly restr ic ted shares
! (common for Randex family of worms).

1 Communication wi th a remote IRC server.

I Downloads/requests other files from In ternet ,

I Creates a s tar tup registry entry.

; There were some system executable files modified, which might
1 indicate the presence of a PE-file infector.
I
| Contains character is t ics of an identif ied securi ty risk.

Severi ty
Level

Bssssssms]

;:i@gg@iSe@i';

filflQQJl

[9@HSS3@SEI9i

Figure 10.2. Example ThreatExpert report summary for submitted malware.

monitoring it using Process Monitor, though it would have taken much more time.

To facilitate the exercise which accompanies this section, a benign Java software

104

Trojan named "Alarm Clock" was written. The Alarm Clock program is a multi­

threaded, console-based application that allows you to interact with it while it continually

checks whether or not to sound the alarm. Obviously, the Alarm Clock program does a

bit more than its advertised function, and the goal of the exercise is to help build

familiarity with the Windows Systinternals tool suite through attempting to figure out

what the additional actions taken by the program are. Keep in mind that malware will not

necessarily accomplish its goals as quickly possible, it may spread out or pace malicious

activity in order to use fewer system resources—helping it stay under the radar of the

user. The user interface of the Alarm Clock application is shown in Fig. 10.3.

+ +

I Alarm Clock VI.0 |

(1) Display the current date and time.
(2) Display the alarm date and time.
(3) Set the alarm date and time.
(4) Quit.

>> Type an option number and press Enter: 1

[INFO] The current time is (05/02/09 13:49:48).

+ +

I Alarm Clock VI.0 |
+ +
(1) Display the current date and time.
(2) Display the alarm date and time.
(3) Set the alarm date and time.
(4) Quit.

>> Type an option number and press Enter: 3

>> Specify the alarm date and time...(mm/dd/yy HH:MM:SS).
» The current date and time is (05/02/09 13:49:53).
>> Type the alarm date and time to set ==> 05/03/09 08:00:00

[INFO] Alarm set is successful.

Figure 10.3. Console-based Ul for the Alarm Clock example software Trojan.

105

10.1 Malware Identification and Monitoring Exercise

Using the Windows Sysinternals suite of diagnostic tools, identify the behaviors

of the Alarm Clock application that make it a software Trojan. Note any filesystem,

memory, registry, or other activity that is unrelated to the program's advertised

functionality. The Alarm Clock application is available at the following location:

> Alarm Clock Java Application Windows® installer:

http://reversingproject.info/repository. php?fileID=10_l_l

Note that even though the Alarm Clock application is written in Java, the bytecode has

been aggressively obfuscated to discourage the use of decompilation as a strategy for

learning the application's behavior.

10.2 Malware Identification and Monitoring Exercise Solution

The Alarm Clock application is a benign software Trojan that in addition to being

a rudimentary alarm clock, collects information about the Windows® installation, and

randomly scans for computers on the Internet or Intranet that will respond to an ICMP

ping. The application logs all of the information it gathers into several files in a directory

off of the root filesystem, or off of the current directory (if the root filesystem is not

writeable). The specific information gathered by the application is as follows:

> Registry data on the Windows® installation including the license key.

> Registry data on the currently installed programs.

> The locations of Microsoft Office, OpenOffice, PDF, and text documents in the

106

http://reversingproject.info/repository

"Documents and Settings" folder.

> IP addresses of random Internet/Intranet hosts that respond to an ICMP ping.

Conclusion

Unless something is done to include a required amount of reverse engineering

instruction in computer science and software engineering programs of study, new

engineers will remain ill-equipped to work with legacy software systems as well as be

unable to ensure that software is secure and safe to deploy. Most large companies have

existing software systems that have been the underpinning of their business for years. It's

highly difficult, not to mention cost-prohibitive, to rip and replace mission-critical

software systems in response to the emergence of a new technology. As a result,

organizations are always looking for candidates that can help them understand what they

have and how it can be evolved to interact with the latest technologies. Students and

practicing engineers need reverse engineering skills to be able to help organizations, both

large and small, understand their current technology stack and recommend an integration

strategy for new technologies. Software security issues, such as how the latest virus or

worm infects computer systems, also require extensive reverse engineering knowledge.

Since students and engineers need to learn reverse engineering, instructors need to

be able to teach it to them. At the present time, even experienced computer science and

software engineering instructors may not have enough knowledge of reverse engineering

to teach a course on it. Compounding the problem is the fact that materials for teaching a

course on reverse engineering may be difficult to find in a format that is compatible with

107

classroom delivery. Several books exist on reverse engineering that cater to industry

professionals or those interested in self-study. However, in a university setting,

instructors engage students in ordered learning through exercises, quizzes, and exams.

Since SRE is not a standard part of the computer science curriculum, instructors will be

mostly on their own to create a course that they feel gives an adequate education on the

subject. Since the uses of software reverse engineering have been well documented in

the literature, it is certainly feasible to provide education on the topic, though coming up

with good exericses is challenging. The importance of making this education available

was emphasized by El-Ramly at the 28th International Conference on Software

Engineering when he stated "Reengineering skills are survival skills for those who have

to carry out software renovation and modernization projects" [48].

The integration of reverse engineering techniques as part of learning in traditional

computer science courses has been tried at the University of Missouri-Rolla [3]. When

students were polled, 77% indicated that applying reverse engineering techniques to their

normal programming assignments reinforced concepts taught during lectures [3].

Furthermore, 82% of students wanted reverse engineering to be blended in future courses,

especially those that dealt with design [3]. Given these promising trials, universities

should continue to work toward establishing standard content for software reverse

engineering and software maintenance courses.

108

References

H. A. Miiller, J. H. Jahnke, D. B. Smith, M. Storey, S. R. Tilley, and K. Wong,
"Reverse engineering: a roadmap," in Proc. Conf. Future of Software Engineering,
Limerick, Ireland, 2000, pp. 47-60.

G. Canfora and M. Di Penta, "New Frontiers of Reverse Engineering," in Proc.
Future of Software Engineering, Minneapolis, MN, 2007, pp. 326-341.

M. R. Ali, "Why teach reverse engineering?" ACM SIGSOFT SEN, v.30, n.4,
pp. 1-4, Jul 2005.

A. V. Deursen, J. Favre, R. Koschke, and J. Rilling, "Experiences in Teaching
Software Evolution and Program Comprehension," in Proc. 11th IEEE Int.
Workshop on Program Comprehension, Washington, DC, 2003, pp. 2834-284.

E. Eliam, Secrets of Reverse Engineering, Indianapolis, IN: Wiley, 2005.

L. Cunningham. (2008, Jul 9). COBOL Reborn [Online]. Available:
http://it.toolbox.com/blogs/oracle-guide/cobol-reborn-25896

B. W Weide, W D. Heym, J. E. Hollingsworth, "Reverse engineering of legacy
code exposed," in Proc. 17th Int. Conf. Software Engineering, Seattle,
Washington, WA, 1995, pp. 327-331.

Wikipedia contributors. (2008, Sept 9). Compiler [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Compiler&oldid=237244781

B. Gough,^« introduction to GCCfor the GNU Compilers gcc and g++, Bristol,
United Kingdom: Network Theory Limited, 2005.

K. Irvine, Assembly Language: For Intel-Based Computers, Upper Saddle River,
NJ: Prentice Hall, 2007.

Boomerang Decompiler Project. (2006), Boomerang: a general, open source,
retargetable decompiler of machine code programs (Version 0.3.2) [Online].
Available: http://boomerang.sourceforge.net

Backer Street Software. (2007). REC: Reverse Engineering Compiler (Version 2.1)
[Online]. Available: http://www.backerstreet.com/rec/rec.htm

O. Yuschuk. (2000). OllyDbg: 32-bit assembler level analysing debugger for
Microsoft Windows® (Version 1.1) [Online]. Available: http://www.ollydbg.de

Wikipedia contributors. (2008, Oct 2008). Machine code [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Machine_code&oldid=246690032

P, Haggar. (2001, Jul 1). Java bytecode: Understanding bytecode makes you a
better programmer [Online]. Available:
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

109

http://it.toolbox.com/blogs/oracle-guide/cobol-reborn-25896
http://en.wikipedia.org/w/index.php?title=Compiler&oldid=237244781
http://boomerang.sourceforge.net
http://www.backerstreet.com/rec/rec.htm
http://www.ollydbg.de
http://en.wikipedia.org/w/index.php?title=Machine_code&oldid=246690032
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

[16] P. Kouznetsov. (2001). J ad: J ad is a Java decompiler, i.e. program that reads one
or more Java class files and converts them into Java source files which can be
compiled again (Version 1.5.8g) [Online]. Available:
http://www.kpdus.com/jad.html

[17] Wei Dai. (2008). Crypto++® Library, Crypto+ + Library is a free C+ + class
library of cryptographic schemes (Version 5.5.2) [Online]. Available:
http ://ww w. cryptopp. com

[18] G.M.Weinberg, The Psychology of Computer Programming, New York, New
York: Dorset House Publishing, 1998.

[19] A. Kalinovsky, Covert Java: Techniques for Decompiling, Patching, and Reverse
Engineering, Indianapolis, IN: Sam's Publishing, 2004.

[20] A. Sinkov, Elementary Cryptanalysis: A Mathematical Approach. Washington,
DC: The Mathematical Association of America, 1980.

[21] M. Stamp, Information Security: Principles and Practice, Hoboken, NJ: John
Wiley & Sons, 2006.

[22] Wikipedia contributors. (2009, Feb 9). ROT13 [Online]. Availble:
http://en.wikipedia.org/w/index.php?title=ROT13&oldid=269492700

[23] B. Baier. (2006). COBF: the Freeware C/C++ Sourcecode Obfuscator (Version
1.06) [Online]. Available: http://home.arcor.de/bernhard.baier/cobf

[24] T.J. McCabe, "A Complexity Measure," IEEE Trans. Softw. Eng, vol. 2, no. 4, pp.
308-320, July 1976. Available: http://www.literateprogramming.com/mccabe.pdf

[25] Wikipedia contributors. (2008, Sept 26). Levenshtein distance [Online]. Available:
http://en.wikipedia.Org/w/index.php?
title=Levenshtein_distance&oldid=273450805

[26] Zelix Pty Ltd. (2009). Zelix Klassmaster: Java Bytecode Obfuscator (Version 5.2)
[Online]. Available: http://www.zelix.com/klassmaster/features.html

[27] The University of Arizona, Department of Computer Science. (2004). SandMark:
A Tool for the Study of Software Protection Algorithms (Version 3.4) [Online].
Available: http://sandmark.cs.arizona.edu

[28] Retrologic Systems. (2007). RetroGuardfor Java Obfuscation (Version 2.3.1)
[Online]. Available: http://www.retrologic.com/retroguard-main.html

[29] E. Lafortune. (2008). ProGuard v4.3: a Free Java bytecode Shrinker, Optimizer,
Obfuscator, andPreverifier (Version 4.3) [Online]. Available:
http://proguard.sourceforge.net

[30] A. G. Shvets. (1999). CafeBabe: Graphical Classfile Disassembler, Editor,
Stripper, Migrator, Compactor and Obfuscator (Version 1.2.7.a) [Online].
Available: http://www.geocities.com/CapeCanaveral/Hall/2334/programs.html

110

http://www.kpdus.com/jad.html
http://en.wikipedia.org/w/index.php?title=ROT13&oldid=269492700
http://home.arcor.de/bernhard.baier/cobf
http://www.literateprogramming.com/mccabe.pdf
http://en.wikipedia.Org/w/index.php
http://www.zelix.com/klassmaster/features.html
http://sandmark.cs.arizona.edu
http://www.retrologic.com/retroguard-main.html
http://proguard.sourceforge.net
http://www.geocities.com/CapeCanaveral/Hall/2334/programs.html

[31] M. R. Batchelder, "Java Bytecode Obfuscation", M.S. Thesis, Dept. Comp Sci.,
McGill Univ., Montreal, Canada, 2007. Available:
http://digitool.library.mcgill.ca: 1801/webclient/StreamGate?
folder_id=0&dvs=1236657408333~988

H. M. Sneed, "Encapsualtion of legacy software: A technique for reusing legacy
software components", in Ann. Software Engineering, v.9, n.4, pp.293-313, 2000.

IBM, (2008). IBM® Rational® Application Developer for WebSphere® Software
(Version 7.5.1) [Online]. Available: http://www-
01 .ibm.com/software/awdtools/developer/application

Sun Microsystems. (2005, May 11). J2EE Connector Architecture [Online].
Available: http://java.sun.com/j2ee/connector

Wikipedia contributors. (2009, Mar 24). Java Architecture for XML Binding
[Online]. Available: http://en.wikipedia.Org/w/index.php?
title=Java_Architecture_for_XML_Binding&oldid=279402856

Free Software Foundation. (2000). COBOL For GCC: a project to produce a free
COBOL compiler compliant with the COBOL 85 Standard, integrated into the
GNU Compiler Collection (GCC) (Version 0.1.2) [Online]. Available:
http://cobolforgcc.sourceforge.net

Micro Focus Ltd (2008). Net Express Personal Edition: a complete environment
for quickly building and modernizing COBOL enterprise components and business
applications (Version 5.1) [Online]. Available:
http://www.microfocus.com/Resources/Communities/Academic

World Wide Web Consortium contributors. (2004, Feb 11). Web Services
Architecture [Online] .Available: http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211

World Wide Web Consortium contributors. (2004, Oct 28). XML Schema Part 1:
Structures (2nd ed.) [Online]. Available: http://www.w3.org/TR/xmlschema-l

World Wide Web Consortium contributors. (2004, Oct 28). XML Schema Part 2:
Datatypes (2nd ed.) [Online]. Available: http://www.w3.org/TR/xmlschema-2

World Wide Web Consortium contributors. (2004, Jun 26). Web Services
Description Language (WSDL) Part 1: Core Language (Version 2.0) [Online].
Available: http://www.w3.org/TR/wsdl20

World Wide Web Consortium contributors. (2004, Jun 26). Web Services
Description Language (WSDL) Part 2: Adjuncts (Version 2.0) [Online]. Available:
http://www.w3.org/TR/wsdl20-adjuncts

Web Services Interoperability Organization. (2007, Oct 24). Basic Profile (Version
1.2) [Online]. Available: http://www.ws-i.org/Profiles/BasicProfile-
l_2(WGAD).html

111

http://digitool.library.mcgill.ca
http://www-
http://ibm.com/software/awdtools/developer/application
http://java.sun.com/j2ee/connector
http://en.wikipedia.Org/w/index.php
http://cobolforgcc.sourceforge.net
http://www.microfocus.com/Resources/Communities/Academic
http://www.w3.org/TR/2004/NOTE-ws-arch-
http://www.w3.org/TR/xmlschema-l
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20-adjuncts
http://www.ws-i.org/Profiles/BasicProfile-

[44] IBM. (2007). Enterprise COBOL for z/OS: Language Reference V4R1. (1st ed.)
[Online]. Available: http://publibfp.boulder.ibm.com/epubs/pdf/igy31r40.pdf

[45] Symantec Corp. (2009 Apr). Symantec Global Internet Security Threat Report (1st
ed.) [Online]. Volume 14(1). Available:
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-
whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf

[46] Microsoft TechNet. (2009, May 7). Windows Sysinternals: utilities to help manage,
troubleshoot and diagnose Windows systems and applications. [Online].
Available: http://technet.microsoft.com/en-us/sysinternals/default.aspx

[47] ThreatExpert Ltd. (2009) ThreatExpert: ThreatExpert is an advanced automated
threat analysis system designed to analyze and report the behavior of computer
viruses, worms, trojans, adware, spyware, and other security related risks in a
fully automated mode. [Online]. Available: http://www.threatexpert.com

[48] M. El-Ramly, "Experience in teaching a software reengineering course," in Proc.
28th Int. Conf on Software Engineering. Shanghai, China, 2006, pp. 699-702.

112

http://publibfp.boulder.ibm.com/epubs/pdf/igy31r40.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://www.threatexpert.com

	Software reverse engineering education
	Recommended Citation

	ProQuest Dissertations

